八年級(jí)數(shù)學(xué)下冊(cè) 第9章 中心對(duì)稱圖形-平行四邊形 9.3 平行四邊形 第2課時(shí) 從邊的關(guān)系判定平行四邊形練習(xí) 蘇科版.doc
《八年級(jí)數(shù)學(xué)下冊(cè) 第9章 中心對(duì)稱圖形-平行四邊形 9.3 平行四邊形 第2課時(shí) 從邊的關(guān)系判定平行四邊形練習(xí) 蘇科版.doc》由會(huì)員分享,可在線閱讀,更多相關(guān)《八年級(jí)數(shù)學(xué)下冊(cè) 第9章 中心對(duì)稱圖形-平行四邊形 9.3 平行四邊形 第2課時(shí) 從邊的關(guān)系判定平行四邊形練習(xí) 蘇科版.doc(6頁珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
課時(shí)作業(yè)(十四) [9.3 第2課時(shí) 從邊的關(guān)系判定平行四邊形] 一、選擇題 1.不能判定一個(gè)四邊形是平行四邊形的條件是( ) A.兩組對(duì)邊分別平行 B.一組對(duì)邊平行另一組對(duì)邊相等 C.一組對(duì)邊平行且相等 D.兩組對(duì)邊分別相等 圖K-14-1 2.如圖K-14-1,在四邊形ABCD中,AD∥BC,要使四邊形ABCD成為平行四邊形,則可增加的條件是( ) A.AB=CD B.AD=BC C.AC=BD D.∠ABC+∠BAD=180 3.已知關(guān)于四邊形ABCD有以下四個(gè)條件:①AB∥CD;②AB=CD;③BC∥AD;④BC=AD.從這四個(gè)條件中任選兩個(gè),能使四邊形ABCD成為平行四邊形的選法有( ) A.6種 B.5種 C.4種 D.3種 4.如圖K-14-2,已知△ABC,分別以點(diǎn)A,C為圓心,BC,AB長為半徑畫弧,兩弧在直線BC上方交于點(diǎn)D,連接AD,CD,則( ) A.∠ADC與∠BAD相等 B.∠ADC與∠BAD互補(bǔ) C.∠ADC與∠ABC互補(bǔ) D.∠ADC與∠ABC互余 圖K-14-2 圖K-14-3 5.xx連云港校級(jí)模擬 如圖K-14-3,在平面直角坐標(biāo)系中,以A(-1,0),B(2,0),C(0,1)為頂點(diǎn)構(gòu)造平行四邊形,下列各點(diǎn)中不能作為平行四邊形頂點(diǎn)坐標(biāo)的是( ) A.(3,1) B.(-4,1) C.(1,-1) D.(-3,1) 二、填空題 6.如圖K-14-4,在四邊形ABCD中,AB=CD,AD=3 cm,當(dāng)BC=________cm時(shí),四邊形ABCD是平行四邊形. 圖K-14-4 圖K-14-5 7.xx金壇模擬 小敏不慎將一塊平行四邊形玻璃打碎成如圖K-14-5所示的四塊,為了能在商店配到一塊與原來相同的平行四邊形玻璃,他帶來了兩塊碎玻璃,其編號(hào)應(yīng)該是________. 8.xx涼山州 如圖K-14-6,在△ABC中,∠BAC=90,AB=4,AC=6,D,E分別是BC,AD的中點(diǎn),AF∥BC交CE的延長線于點(diǎn)F,則四邊形AFBD的面積為________. 圖K-14-6 三、解答題 9.xx岳陽 如圖K-14-7,在平行四邊形ABCD中,AE=CF,求證:四邊形BFDE是平行四邊形. 圖K-14-7 10.如圖K-14-8,在?ABCD中,F(xiàn),E分別是BA,DC延長線上的點(diǎn),且AE∥CF,AE與CF分別交BC,AD于點(diǎn)G,H.求證:EG=FH. 圖K-14-8 11.如圖K-14-9所示,在?ABCD中,E,F(xiàn)分別是AB,CD上的點(diǎn),AE=CF,M,N分別是DE,BF的中點(diǎn).求證:四邊形ENFM是平行四邊形. 圖K-14-9 12.xx鎮(zhèn)江模擬 如圖K-14-10①,已知點(diǎn)A,B,C,D在一條直線上,BF,CE相交于點(diǎn)O,AE=DF,∠E=∠F,OB=OC. (1)求證:△ACE≌△DBF; (2)如圖②,把△DBF沿AD翻折使點(diǎn)F落在點(diǎn)G處,連接BE和CG.求證:四邊形BGCE是平行四邊形. 圖K-14-10 動(dòng)點(diǎn)問題 如圖K-14-11,在四邊形ABCD中,AD∥BC,AD=9 cm,BC=6 cm,點(diǎn)P,Q分別從點(diǎn)A,C同時(shí)出發(fā),點(diǎn)P以1 cm/s的速度由點(diǎn)A向點(diǎn)D運(yùn)動(dòng),點(diǎn)Q以2 cm/s的速度由點(diǎn)C向點(diǎn)B運(yùn)動(dòng),第幾秒時(shí)四邊形ABCD被PQ分成的兩個(gè)四邊形中有一個(gè)是平行四邊形? 圖K-14-11 詳解詳析 課時(shí)作業(yè)(十四) [9.3 第2課時(shí) 從邊的關(guān)系判定平行四邊形] 【課時(shí)作業(yè)】 [課堂達(dá)標(biāo)] 1.[答案] B 2.[答案] B 3.[解析] C 依題意得有四種組合方式符合題意:①③,利用兩組對(duì)邊平行的四邊形是平行四邊形判定;②④,利用兩組對(duì)邊相等的四邊形是平行四邊形判定;①②和③④,利用一組對(duì)邊平行且相等的四邊形是平行四邊形判定.故選C. 4.[解析] B 如圖所示,依題意得AD=BC,CD=AB, ∴四邊形ABCD是平行四邊形, ∴∠ADC+∠BAD=180,∠ADC=∠ABC. 5.[解析] B 如圖所示,①以AC為對(duì)角線,可以畫出?AFCB,F(xiàn)(-3,1);②以AB為對(duì)角線,可以畫出?ACBE,E(1,-1);③以BC為對(duì)角線,可以畫出?ACDB,D(3,1).故選B. 6.[答案] 3 7.[答案] ②③ [解析] ∵只有②③兩塊角的兩邊互相平行,且中間部分相連,角的兩邊的延長線的交點(diǎn)就是平行四邊形的頂點(diǎn),∴帶②③兩塊碎玻璃就可以確定平行四邊形的大?。? 8.[答案] 12 [解析] ∵AF∥BC,∴∠AFE=∠DCE. 在△AEF與△DEC中, ∴△AEF≌△DEC(AAS),∴AF=DC. ∵BD=DC,∴AF=BD, ∴四邊形AFBD是平行四邊形, ∴S四邊形AFBD=2S△ABD. 又∵BD=DC,∴S△ABC=2S△ABD, ∴S四邊形AFBD=S△ABC. ∵∠BAC=90,AB=4,AC=6, ∴S△ABC=ABAC=46=12, ∴S四邊形AFBD=12. 9.證明:∵四邊形ABCD是平行四邊形, ∴AB∥CD,AB=CD. 又∵AE=CF,∴BE=DF, ∴BE∥DF且BE=DF, ∴四邊形BFDE是平行四邊形. 10.證明:∵四邊形ABCD是平行四邊形, ∴AB∥CD,AD∥BC, 即AF∥EC,AH∥CG. 又∵AE∥CF, ∴四邊形AECF和四邊形AGCH都是平行四邊形, ∴AE=CF,AG=CH, ∴AE-AG=CF-CH,即EG=FH. 11.[解析] 由平行四邊形的性質(zhì)可證明△ADE≌△CBF,可得DE=BF.結(jié)合條件可得EM∥FN,所以結(jié)論成立. 證明:∵四邊形ABCD是平行四邊形, ∴AD=CB,∠A=∠C,CD∥AB. 又∵AE=CF, ∴△ADE≌△CBF, ∴∠DEA=∠BFC,DE=BF. ∵M(jìn),N分別是DE,BF的中點(diǎn), ∴EM=FN. ∵CD∥AB, ∴∠BFC=∠NBE, ∴∠DEA=∠NBE, ∴EM∥FN, ∴四邊形ENFM是平行四邊形. 12.證明:(1)∵OB=OC, ∴∠ACE=∠DBF. 在△ACE和△DBF中, ∴△ACE≌△DBF(AAS). (2)由△ACE≌△DBF得CE=BF. ∵∠ACE=∠DBF,∠DBG=∠DBF, ∴∠ACE=∠DBG,∴CE∥BG. ∵CE=BF,BG=BF,∴CE=BG, ∴四邊形BGCE是平行四邊形. [素養(yǎng)提升] 解:設(shè)運(yùn)動(dòng)的時(shí)間是t s, 由題意,得AP=t,CQ=2t,AD∥BC, ①當(dāng)AP=BQ時(shí),四邊形ABQP是平行四邊形. ∵BQ=BC-CQ=6-2t, ∴t=6-2t, 解得t=2; ②當(dāng)PD=CQ時(shí),四邊形CDPQ是平行四邊形. ∵PD=AD-AP=9-t, ∴2t=9-t,解得t=3. 綜上所述,當(dāng)運(yùn)動(dòng)到第2秒或第3秒時(shí),四邊形ABCD被PQ分成的兩個(gè)四邊形中有一個(gè)是平行四邊形.- 1.請(qǐng)仔細(xì)閱讀文檔,確保文檔完整性,對(duì)于不預(yù)覽、不比對(duì)內(nèi)容而直接下載帶來的問題本站不予受理。
- 2.下載的文檔,不會(huì)出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請(qǐng)點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對(duì)作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 八年級(jí)數(shù)學(xué)下冊(cè) 第9章 中心對(duì)稱圖形-平行四邊形 9.3 平行四邊形 第2課時(shí) 從邊的關(guān)系判定平行四邊形練習(xí) 蘇科版 年級(jí) 數(shù)學(xué) 下冊(cè) 中心對(duì)稱 圖形 課時(shí) 關(guān)系 判定 練習(xí)
鏈接地址:http://m.jqnhouse.com/p-5459236.html