2019-2020年人教A版數(shù)學(xué)必修4《平面向量應(yīng)用舉例》同步練習(xí)(B)含答案.doc
《2019-2020年人教A版數(shù)學(xué)必修4《平面向量應(yīng)用舉例》同步練習(xí)(B)含答案.doc》由會(huì)員分享,可在線(xiàn)閱讀,更多相關(guān)《2019-2020年人教A版數(shù)學(xué)必修4《平面向量應(yīng)用舉例》同步練習(xí)(B)含答案.doc(19頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
2019-2020年人教A版數(shù)學(xué)必修4《平面向量應(yīng)用舉 例》同步練習(xí)(B)含答案 一、選擇題:本大題共12個(gè)小題,每小題5分,共60分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的. 1.在中,若,則一定是( ). A.鈍角三角形 B.銳角三角形 C.直角三角形 D.不能確定 【答案】C 【解析】由于,化簡(jiǎn)得,因此.選C. 2.【xx屆南寧市高三畢業(yè)班摸底】已知是內(nèi)部一點(diǎn),,且,則的面積為( ) A. B. C. D. 【答案】A 3.已知△ABC的外接圓的圓心為O,半徑為1,若=0,則△AOC的面積為( ) A. B. C. D. 【答案】A 【解析】由題設(shè)得:,所以,選A. 4. 的三個(gè)內(nèi)角成等差數(shù)列,且,則的形狀為 ( ) A、鈍角三角形 B、等邊三角形 C、直角三角形 D、等腰直角三角形 【答案】B 【解析】 由題成等差數(shù)列,則;,由,可得; 為等腰三角形,綜上可得;等邊三角形. 5.如圖,正方形中,為的中點(diǎn),若,則的值為( ) A. B. C.1 D.-1 【答案】A 6.已知,,為坐標(biāo)原點(diǎn),點(diǎn)C在∠AOB內(nèi),且,設(shè),則的值為( ) A. B. C. D. 【答案】C. 【解析】如圖所示,∵,∴設(shè),,又∵,, ∴,∴. 7.如圖,正方形中,分別是的中點(diǎn),若,則 ( ) A.2 B. C. D. 【答案】D 【解析】設(shè)正方形邊長(zhǎng)為,以為原點(diǎn)建立平面直角坐標(biāo)系,則,,依題意,,即,解得. 8. 已知點(diǎn)是圓上的動(dòng)點(diǎn),點(diǎn)是以坐標(biāo)原點(diǎn)為圓心的單位圓上的動(dòng)點(diǎn),且,則的最小值為( ) A. 4 B. 5 C. 6 D. 7 【答案】B 【解析】由題設(shè) 是圓的直徑,則 ,故時(shí),,應(yīng)選答案B. 9. 設(shè)為的外心,且,則的內(nèi)角的值為( ) A. B. C. D. 【答案】C 【解析】 設(shè)外接圓的半徑為R, ∵, ∴移項(xiàng)得=?, ∴=(?)2, ∴169R2+120?=169R2, ∴?=0,∴∠AOB=, ∵根據(jù)圓心角等于同弧所對(duì)的圓周角的關(guān)系如圖: 所以△ABC中的內(nèi)角C值為. 故選:C. 10. 已知O是銳角△ABC的外心,若(x,y∈R),則( ) 【答案】C 11.在中,,如果不等式恒成立,則實(shí)數(shù)的取值范圍是( ) A. B. C. D. 【答案】C. 【解析】在直角三角形ABC中,易知,由,得,即,解得,故選C. 12.已知和是平面上的兩個(gè)單位向量,且,,若O為坐標(biāo)原點(diǎn),均為正常數(shù),則的最大值為 ( ) A. B. C. D. 【答案】A 【解析】由可得,,所以的最大值為. 第II卷(共90分) 二、填空題(本大題共4小題,每小題5分,共20分。把答案填在題中的橫線(xiàn)上。) 13.【xx屆江蘇省徐州市高三上學(xué)期期中】如圖,在半徑為2的扇形中,,為上的一點(diǎn),若,則的值為_(kāi)_____. 【答案】 【解析】由得 以O(shè)為坐標(biāo)原點(diǎn),OA為x軸建立直角坐標(biāo)系,則 14. 已知在直角三角形中,,,點(diǎn)是斜邊上的一個(gè)三等分點(diǎn),則 . 【答案】4. 【解析】由題意可建立如圖所示的坐標(biāo)系,可得,,或, 所以可得或,,, 所以, 所以或.故應(yīng)填4. 15.已知為等邊三角形內(nèi)一點(diǎn),且滿(mǎn)足 ,若三角形與三角形的面積之比為,則實(shí)數(shù)的值為_(kāi)_______. 【答案】 【解析】 不妨設(shè)等邊三角形的邊長(zhǎng)為,以中點(diǎn)為原點(diǎn)、為軸,中線(xiàn)為軸,建立平面直角坐標(biāo)系,設(shè)點(diǎn),則,代入等式,得,又,則三角形與的高分別為,由兩個(gè)三角形面積比得,解得或,經(jīng)檢驗(yàn)當(dāng)時(shí),點(diǎn)在三角形外,不合題意,所以. 16.【xx屆全國(guó)名校大聯(lián)考高三第二次聯(lián)考】已知的三邊垂直平分線(xiàn)交于點(diǎn), 分別為內(nèi)角的對(duì)邊,且,則的取值范圍是__________. 【答案】 【解析】 如圖,延長(zhǎng)交的外接圓與點(diǎn),連接,則 所以 , 又, 把代入得, 又,所以, 把代入得的取值范圍是. 三、解答題 (本大題共6小題,共70分.解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟.) 17.(本小題10分)△ABC中,|AB|=10,|AC|=15,∠BAC=,點(diǎn)D是邊AB的中點(diǎn),點(diǎn)E在直線(xiàn)AC上,且,直線(xiàn)CD與BE相交于點(diǎn)P,求線(xiàn)段AP的長(zhǎng). 【答案】 【解析】如圖, A D B E C P 于是,解得,即 ∴==37. 故. 18.(本小題12分)已知是邊長(zhǎng)為4的正三角形,D、P是內(nèi)部?jī)牲c(diǎn),且滿(mǎn)足,求的面積. 【答案】. 19.(本小題12分)在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),已知向量,又點(diǎn), ,(). (Ⅰ)若,且,求向量; (Ⅱ)若向量與向量共線(xiàn),當(dāng),且取最大值4時(shí),求. 【答案】(1)或 (2)="32 " 【解析】解: 又,得 或……………….5 與向量共線(xiàn), …………….8 對(duì)稱(chēng)軸方程: 由,得,此時(shí) ="32 " ……………………………11 綜上得=32. 20.(本小題12分)已知中,, 為角分線(xiàn). (Ⅰ)求的長(zhǎng)度; (Ⅱ)過(guò)點(diǎn)作直線(xiàn)交于不同兩點(diǎn),且滿(mǎn)足,求證:. 【答案】(Ⅰ);(Ⅱ)詳見(jiàn)解析. 【解析】 (1)由角分線(xiàn)定理可得, , 所以. (2),所以. 21.(本小題12分)如圖,平面直角坐標(biāo)系中,已知向量,,且。 (1)求與間的關(guān)系; (2)若,求與的值及四邊形的面積. 【答案】(1);(2)或,. 【解析】 (1)由題意得, 因?yàn)?,所以,即?(2)由題意得, 因?yàn)?,所以即,即?由①②得或 當(dāng)時(shí),,,則 當(dāng)時(shí),,,則 所以或,四邊形的面積為16. 22.(本小題12分)【浙江省9 1高中聯(lián)盟期中聯(lián)考】如下圖,梯形, , , , 為中點(diǎn), . (Ⅰ)當(dāng)時(shí),用向量, 表示的向量; (Ⅱ)若(為大于零的常數(shù)),求的最小值 并指出相應(yīng)的實(shí)數(shù)的值. 【答案】(Ⅰ)(Ⅱ)見(jiàn)解析 【解析】試題分析:(Ⅰ) (Ⅱ),由, ⑴ 當(dāng)時(shí), , ;⑵當(dāng)時(shí), ,此時(shí). 試題解析: 解:(Ⅰ)連,則 ⑴ 當(dāng)時(shí), , 此時(shí), ; ⑵ 當(dāng)時(shí), ,此時(shí). 附送: 2019-2020年人教A版數(shù)學(xué)必修4《平面向量的基本 定理》同步練習(xí)(A)含答案 一、選擇題:本大題共12個(gè)小題,每小題5分,共60分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的. 1.【xx屆河南省長(zhǎng)葛一高高三上學(xué)期開(kāi)學(xué)】如圖,在中, 為線(xiàn)段的中點(diǎn), 依次為線(xiàn)段從上至下的3個(gè)四等分點(diǎn),若,則( ) A. 點(diǎn)與圖中的點(diǎn)重合 B. 點(diǎn)與圖中的點(diǎn)重合 C. 點(diǎn)與圖中的點(diǎn)重合 D. 點(diǎn)與圖中的點(diǎn)重合 【答案】C 2.已知向量,若與共線(xiàn),則( ) A. B. C.- D. 【答案】C 【解析】 ,所以與不共線(xiàn),那么當(dāng)與共線(xiàn)時(shí),,即得,故選C. 3. 已知點(diǎn),,則與向量同方向的單位向量為( ) A. B. C. D. 【答案】A 【解析】試題分析:,所以與同方向的意念向量為,故選A. 4已知=(-2,1),=(,),且// ,則=( ) A.1 B.2 C.3 D.5 【答案】A 【解析】因?yàn)?/,直接由共線(xiàn)定理知, ,即,故應(yīng)選A. 5. 已知向量,,且∥,則( ) A.3 B. C. D. 【答案】B 【解析】. 6.已知向量p=(2,-3),q=(x,6),且p∥q,則|p+q|的值為( ) A. B. C.5 D.13 【答案】B 【解析】由題意得26+3x=0?x=-4?|p+q|=|(2,-3)+(-4,6)|=|(-2,3)|=. 7.【xx屆河北省石家莊二中高三八月模擬】已知點(diǎn)是所在平面內(nèi)的一點(diǎn),且,設(shè),則 ( ) A. 6 B. C. D. 【答案】D 【解析】由題意作圖:C是線(xiàn)段BD的中點(diǎn). . 又,由平面向量基本定理可知: ∴. 故選:D. 8.如圖,正方形中,是的中點(diǎn),若,則( ) A. B. C. D.2 【答案】B 9.已知平面向量=(2,-1),=(1,1),=(-5,1),若∥,則實(shí)數(shù)k的值為( ) A.2 B. C. D. 【答案】B 【解析】∵=,=, ∴=,又 =,且∥,∴,解得:=.故選B. 10.已知△ABC的頂點(diǎn)分別為A(2,1),B(3,2),C(-3,-1),BC邊上的高為AD,則點(diǎn)D的坐標(biāo)為( ) A.(-,) B.(,-) C.(,) D.(-,-) 【答案】C 11.【xx屆江西省六校高三上學(xué)期第五次聯(lián)考】在等腰直角中, 在邊上且滿(mǎn)足: ,若,則的值為( ) A. B. C. D. 【答案】C 【解析】,∴A,B,D三點(diǎn)共線(xiàn), ∴由題意建立如圖所示坐標(biāo)系,設(shè)AC=BC=1,則C(0,0),A(1,0),B(0,1), 直線(xiàn)AB的方程為x+y=1,直線(xiàn)CD的方程為, 故聯(lián)立解得, ,故, 故, 故,故,故. 本題選擇C選項(xiàng). 12. 如圖,在△中, ,是上的一點(diǎn),若,則實(shí)數(shù)的值為( ) A. B. C. D. 【答案】C 第II卷(共90分) 二、填空題(本大題共4小題,每小題5分,共20分。把答案填在題中的橫線(xiàn)上。) 13.【xx屆西藏自治區(qū)拉薩中學(xué)高三第八次月考】已知, ,且,則實(shí)數(shù)__________. 【答案】-6 【解析】解析:因,故, ,由題設(shè)可得,解之得,應(yīng)填答案. 14.已知點(diǎn),線(xiàn)段的中點(diǎn)的坐標(biāo)為.若向量與向量共線(xiàn),則 _____________. 【答案】 【解析】 由題設(shè)條件,得,所以.因?yàn)橄蛄颗c向量共線(xiàn),所以,所以. 15.【xx屆河南省中原名校高三第三次考評(píng)】向量, , 在正方形網(wǎng)格中的位置如圖所示,若(, ),則__________. 【答案】4 【解析】以向量 的公共點(diǎn)為坐標(biāo)原點(diǎn),建立如圖直角坐標(biāo)系 可得 ,解之得 因此, 16.已知梯形中,是邊上一點(diǎn),且.當(dāng)在邊上運(yùn)動(dòng)時(shí),的最大值是________________. 【答案】 【解析】設(shè),則 ,故. 三、解答題 (本大題共6小題,共70分.解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟.) 17.(本小題10分)在直角坐標(biāo)系中,已知點(diǎn),點(diǎn)在三邊圍成的區(qū)域(含邊界)上,且. (1) 若,求; (2)用表示,并求的最大值. 【答案】(1);(2),1. 【解析】 (1) , 又 (2) 即 兩式相減得: 令,由圖可知,當(dāng)直線(xiàn)過(guò)點(diǎn)時(shí),取得最大值1,故的最大值為1. 18.(本小題12分)已知向量,且與不共線(xiàn). (1)設(shè),證明:四邊形為菱形; (2)當(dāng)兩個(gè)向量與的模相等時(shí),求角. 【答案】(1)證明見(jiàn)解析;(2) 或. 試題解析: (1)證明:∵,∴四邊形為平行四邊形, 又,∴四邊形為菱形. (2)解:由題意,得.又由(1)知 , , ∴,∴,得.又,∴或. 19.(本小題12分)在平行四邊形中,E,G分別是BC,DC上的點(diǎn)且,.DE與BG交于點(diǎn)O. (1)求; (2)若平行四邊形的面積為21,求的面積. 【答案】(1);(2) 【解析】(1)設(shè),據(jù)題意可得,從而有.由三點(diǎn)共線(xiàn),則存在實(shí)數(shù),使得,即 ,由平面向量基本定理,解得,從而就有; (2)由(1)可知,所以. 20.(本小題12分)已經(jīng)向量,,點(diǎn)A. (1)求線(xiàn)BD的中點(diǎn)M的坐標(biāo); (2)若點(diǎn)P滿(mǎn)足,求和的值. 【答案】(1) (2), 【解析】(1)設(shè)點(diǎn)B的坐標(biāo)為,∵ ,A, ∴=. ∴,解得, ∴點(diǎn),同理可得. 設(shè)線(xiàn)段BD的中點(diǎn)為,,, ∴ (2),, ∵ ∴. 即,得. 21.(本小題12分)在平面直角坐標(biāo)系中,給定,點(diǎn)為的中點(diǎn),點(diǎn)滿(mǎn)足,點(diǎn)滿(mǎn)足. (1)求與的值; (2)若三點(diǎn)坐標(biāo)分別為,求點(diǎn)坐標(biāo). 【答案】(1);(2)點(diǎn)的坐標(biāo)為. 【解析】(1)設(shè) 則 , , 故 而 由平面向量基本定理得,解得 22.(本小題12分)設(shè)為的重心,過(guò)作直線(xiàn)分別交線(xiàn)段(不與端點(diǎn)重合)于.若. (1)求的值; (2)求的取值范圍. 【答案】(1) ;(2) . 【解析】 (1)連結(jié)AG并延長(zhǎng)交BC于M,則M是BC的中點(diǎn),設(shè),則 , ① 又, ② , 三點(diǎn)共線(xiàn),故存在實(shí)數(shù),使, , 消得:,即 或者另一種解法由②式得, ③ 將③代入①得.三點(diǎn)共線(xiàn), 故,即 .- 1.請(qǐng)仔細(xì)閱讀文檔,確保文檔完整性,對(duì)于不預(yù)覽、不比對(duì)內(nèi)容而直接下載帶來(lái)的問(wèn)題本站不予受理。
- 2.下載的文檔,不會(huì)出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請(qǐng)點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁(yè)顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開(kāi)word文檔。
- 特殊限制:
部分文檔作品中含有的國(guó)旗、國(guó)徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對(duì)作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 平面向量應(yīng)用舉例 2019 2020 年人教 數(shù)學(xué) 必修 平面 向量 應(yīng)用 舉例 同步 練習(xí) 答案
鏈接地址:http://m.jqnhouse.com/p-5625001.html