高考數(shù)學(xué)一輪復(fù)習(xí) 第八章 平面解析幾何 8.3 圓的方程課件(理).ppt
《高考數(shù)學(xué)一輪復(fù)習(xí) 第八章 平面解析幾何 8.3 圓的方程課件(理).ppt》由會(huì)員分享,可在線閱讀,更多相關(guān)《高考數(shù)學(xué)一輪復(fù)習(xí) 第八章 平面解析幾何 8.3 圓的方程課件(理).ppt(88頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
第三節(jié)圓的方程 知識(shí)梳理 1 圓的定義 方程 定點(diǎn) 定長(zhǎng) a b r D2 E2 4F 0 2 點(diǎn)與圓的位置關(guān)系點(diǎn)M x0 y0 與圓 x a 2 y b 2 r2的位置關(guān)系 1 點(diǎn)M x0 y0 在圓外 則 x0 a 2 y0 b 2 r2 2 點(diǎn)M x0 y0 在圓上 則 x0 a 2 y0 b 2 r2 3 點(diǎn)M x0 y0 在圓內(nèi) 則 x0 a 2 y0 b 2 r2 特別提醒 1 解答圓的問題的關(guān)鍵注意數(shù)形結(jié)合 充分運(yùn)用圓的幾何性質(zhì) 簡(jiǎn)化運(yùn)算 2 二元二次方程表示圓的條件對(duì)于方程x2 y2 Dx Ey F 0表示圓時(shí)易忽視D2 E2 4F 0這一條件 小題快練 鏈接教材練一練1 必修2P124T1 2 改編 圓x2 y2 2x 4y 1 0的圓心坐標(biāo)是 半徑是 解析 由x2 y2 2x 4y 1 0得 x 1 2 y 2 2 6 所以該圓的圓心坐標(biāo)為 1 2 半徑為答案 1 2 2 必修2P124T4改編 已知圓C經(jīng)過(guò)A 5 2 B 1 4 兩點(diǎn) 圓心在x軸上 則圓C的方程為 解析 因?yàn)閳A心在x軸上 設(shè)圓心為 a 0 所以圓的方程為 x a 2 y2 r2 又因?yàn)锳 5 2 B 1 4 在圓上 所以解得a 1 r2 20 所以圓的方程為 x 1 2 y2 20 答案 x 1 2 y2 20 感悟考題試一試3 2015 北京高考 圓心為 1 1 且過(guò)原點(diǎn)的圓的方程是 A x 1 2 y 1 2 1B x 1 2 y 1 2 1C x 1 2 y 1 2 2D x 1 2 y 1 2 2 解析 選D 半徑r 所以圓的方程為 x 1 2 y 1 2 2 4 2016 天水模擬 圓 x 2 2 y2 5關(guān)于直線y x對(duì)稱的圓的方程為 A x 2 2 y2 5B x2 y 2 2 5C x 2 2 y 2 2 5D x2 y 2 2 5 解析 選D 由題意知所求圓的圓心坐標(biāo)為 0 2 所以所求圓的方程為x2 y 2 2 5 5 2016 太原模擬 以 1 0 為圓心 且與直線x y 3 0相切的圓的方程是 A x 1 2 y2 8B x 1 2 y2 8C x 1 2 y2 16D x 1 2 y2 16 解析 選A 因?yàn)樗髨A的圓心坐標(biāo)為M 1 0 所以可排除B D 因?yàn)樗髨A與直線x y 3 0相切 所以圓心M 1 0 到直線x y 3 0的距離即為該圓的半徑r 即r 4 可排除C 所以所求圓的方程為 x 1 2 y2 2 8 考向一求圓的方程 典例1 1 2015 全國(guó)卷 過(guò)三點(diǎn)A 1 3 B 4 2 C 1 7 的圓交y軸于M N兩點(diǎn) 則 MN A 2B 8C 4D 10 2 在平面直角坐標(biāo)系xOy中 求與x軸相交于A 1 0 和B 5 0 兩點(diǎn)且半徑為的圓的標(biāo)準(zhǔn)方程 解題導(dǎo)引 1 利用三點(diǎn)A 1 3 B 4 2 C 1 7 求出圓的方程 令x 0 求出y的值 從而求出 MN 的值 2 因?yàn)橐阎獔A的半徑 所以可設(shè)圓的標(biāo)準(zhǔn)方程 利用待定系數(shù)法求解 規(guī)范解答 1 選C 由已知得kAB kCB 所以kAB kCB 1 所以AB CB 即 ABC為直角三角形 其外接圓圓心為 1 2 半徑r 5 所以外接圓方程為 x 1 2 y 2 2 25 令x 0得y 2 2 所以 MN 4 2 設(shè)圓的標(biāo)準(zhǔn)方程為 x a 2 y b 2 5 因?yàn)辄c(diǎn)A B在圓上 所以可得到方程組 所以圓的標(biāo)準(zhǔn)方程是 x 3 2 y 1 2 5或 x 3 2 y 1 2 5 一題多解 解答本例 2 還有如下解法 解析 由于A B兩點(diǎn)在圓上 那么線段AB是圓的一條弦 根據(jù)平面幾何知識(shí) 這個(gè)圓的圓心在線段AB的垂直平分線x 3上 于是可以設(shè)圓心為C 3 b 又AC 得解得b 1或b 1 因此 所求圓的標(biāo)準(zhǔn)方程為 x 3 2 y 1 2 5或 x 3 2 y 1 2 5 規(guī)律方法 1 求圓的方程的兩種方法 1 直接法 根據(jù)圓的幾何性質(zhì) 直接求出圓心坐標(biāo)和半徑 進(jìn)而寫出方程 2 待定系數(shù)法 若已知條件與圓心 a b 和半徑r有關(guān) 則設(shè)圓的標(biāo)準(zhǔn)方程 依據(jù)已知條件列出關(guān)于a b r的方程組 從而求出a b r的值 若已知條件沒有明確給出圓心或半徑 則選擇圓的一般方程 依據(jù)已知條件列出關(guān)于D E F的方程組 進(jìn)而求出D E F的值 2 確定圓心位置的方法 1 圓心在過(guò)切點(diǎn)且與切線垂直的直線上 2 圓心在圓的任意弦的垂直平分線上 3 兩圓相切時(shí) 切點(diǎn)與兩圓圓心共線 變式訓(xùn)練 1 已知圓C1 x 1 2 y 1 2 1 圓C2與圓C1關(guān)于直線x y 1 0對(duì)稱 則圓C2的方程為 A x 2 2 y 2 2 1B x 2 2 y 2 2 1C x 2 2 y 2 2 1D x 2 2 y 2 2 1 解析 選B 圓C1 x 1 2 y 1 2 1的圓心坐標(biāo) 1 1 關(guān)于直線x y 1 0對(duì)稱的圓心坐標(biāo)為 2 2 所求的圓C2的方程為 x 2 2 y 2 2 1 2 2015 湖北高考 如圖 已知圓C與x軸相切于點(diǎn)T 1 0 與y軸正半軸交于兩點(diǎn)A B B在A的上方 且 AB 2 1 圓C的標(biāo)準(zhǔn)方程為 2 圓C在點(diǎn)B處的切線在x軸上的截距為 解析 1 設(shè)點(diǎn)C的坐標(biāo)為 x0 y0 則由圓C與x軸相切于點(diǎn)T 1 0 知 點(diǎn)C的橫坐標(biāo)為1 即x0 1 半徑r y0 又因?yàn)?AB 2 所以12 12 y02 即y0 r 所以圓C的標(biāo)準(zhǔn)方程為 x 1 2 y 2 2 2 令x 0得 B 0 1 設(shè)圓C在點(diǎn)B處的切線方程為y 1 kx 則圓心C到其距離為 d 解之得k 1 即圓C在點(diǎn)B處的切線方程為y x 1 于是令y 0可得x 1 即圓C在點(diǎn)B處的切線在x軸上的截距為 1 答案 1 x 1 2 y 2 2 2 1 加固訓(xùn)練 1 經(jīng)過(guò)點(diǎn) 1 0 且圓心是兩直線x 1與x y 2的交點(diǎn)的圓的方程為 A x 1 2 y2 1B x 1 2 y 1 2 1C x2 y 1 2 1D x 1 2 y 1 2 2 解析 選B 由即所求圓的圓心坐標(biāo)為 1 1 又由該圓過(guò)點(diǎn) 1 0 得其半徑為1 故圓的方程為 x 1 2 y 1 2 1 2 若點(diǎn) 1 1 在圓 x a 2 y a 2 4的內(nèi)部 則實(shí)數(shù)a的取值范圍是 A 11或a 1D a 1 解析 選A 因?yàn)辄c(diǎn) 1 1 在圓內(nèi) 所以 1 a 2 1 a 2 4 即 1 a 1 3 圓心在y軸上且通過(guò)點(diǎn) 3 1 的圓與x軸相切 則該圓的方程是 A x2 y2 10y 0B x2 y2 10y 0C x2 y2 10 x 0D x2 y2 10 x 0 解析 選B 設(shè)圓心為 0 b 半徑為R 則R b 所以圓的方程為x2 y b 2 b2 因?yàn)辄c(diǎn) 3 1 在圓上 所以9 1 b 2 b2 解得b 5 所以圓的方程為x2 y2 10y 0 4 2016 沈陽(yáng)模擬 圓心在直線x 2上的圓與y軸交于兩點(diǎn)A 0 4 B 0 2 則該圓的標(biāo)準(zhǔn)方程為 解析 設(shè)圓心為 2 a 因?yàn)閳A與y軸交于兩點(diǎn)A 0 4 B 0 2 即截y軸所得弦長(zhǎng)為2 所以圓的半徑為r 故圓的標(biāo)準(zhǔn)方程為 x 2 2 y 3 2 5 答案 x 2 2 y 3 2 5 5 已知兩點(diǎn)A 0 3 B 4 0 若點(diǎn)P是圓x2 y2 2y 0上的動(dòng)點(diǎn) 則 ABP面積的最小值為 解析 如圖 過(guò)圓心C向直線AB作垂線交圓于點(diǎn)P 這時(shí) ABP的面積最小 直線AB的方程為即3x 4y 12 0 圓心C到直線AB的距離為所以 ABP的面積的最小值為答案 考向二與圓有關(guān)的軌跡問題 典例2 1 已知A B是圓O x2 y2 16上的兩點(diǎn) 且 AB 6 若以AB的長(zhǎng)為直徑的圓M恰好經(jīng)過(guò)點(diǎn)C 1 1 則圓心M的軌跡方程是 2 2015 廣東高考改編 已知過(guò)原點(diǎn)的動(dòng)直線l與圓C1 x2 y2 6x 5 0相交于不同的兩點(diǎn)A B 求圓C1的圓心坐標(biāo) 求線段AB的中點(diǎn)M的軌跡C的方程 解題導(dǎo)引 1 可利用 MC 等于圓的半徑 進(jìn)而得出點(diǎn)M的軌跡方程 2 將圓C1的方程化為標(biāo)準(zhǔn)方程可得圓C1的圓心坐標(biāo) 先設(shè)線段AB的中點(diǎn)M的坐標(biāo) 再由圓的性質(zhì)可得點(diǎn)M滿足的方程 進(jìn)而利用動(dòng)直線l與圓C1相交可得x的取值范圍 即可得線段AB的中點(diǎn)M的軌跡C的方程 規(guī)范解答 1 設(shè)圓心坐標(biāo)為M x y 則 x 1 2 y 1 2 即 x 1 2 y 1 2 9 答案 x 1 2 y 1 2 9 2 由x2 y2 6x 5 0得 x 3 2 y2 4 所以圓C1的圓心坐標(biāo)為 3 0 設(shè)M x y 則因?yàn)辄c(diǎn)M為線段AB的中點(diǎn) 所以C1M AB 所以kC1M kAB 1 當(dāng)x 3時(shí)可得整理得又當(dāng)直線l與x軸重合時(shí) M點(diǎn)坐標(biāo)為 3 0 代入上式成立 設(shè)直線l的方程為y kx 與x2 y2 6x 5 0聯(lián)立 消去y得 1 k2 x2 6x 5 0 令其判別式 6 2 4 1 k2 5 0 得k2 此時(shí)方程為x2 6x 5 0 解上式得x 因此 x 3 所以線段AB的中點(diǎn)M的軌跡方程為 規(guī)律方法 求與圓有關(guān)的軌跡問題的四種方法 變式訓(xùn)練 1 設(shè)A 3 0 B 3 0 為兩定點(diǎn) 動(dòng)點(diǎn)P到A點(diǎn)的距離與到B點(diǎn)的距離之比為1 2 則點(diǎn)P的軌跡圖形所圍成的面積是 解析 設(shè)P x y 則由題意有所以x2 y2 10 x 9 0 所以 x 5 2 y2 16 所以點(diǎn)P在半徑為4的圓上 故其面積為16 答案 16 2 已知圓x2 y2 4上一定點(diǎn)A 2 0 B 1 1 為圓內(nèi)一點(diǎn) P Q為圓上的動(dòng)點(diǎn) 1 求線段AP中點(diǎn)的軌跡方程 2 若 PBQ 90 求線段PQ中點(diǎn)的軌跡方程 解析 1 設(shè)AP的中點(diǎn)為M x y 由中點(diǎn)坐標(biāo)公式可知 P點(diǎn)的坐標(biāo)為 2x 2 2y 因?yàn)镻點(diǎn)在圓x2 y2 4上 所以 2x 2 2 2y 2 4 故線段AP中點(diǎn)的軌跡方程為 x 1 2 y2 1 2 設(shè)PQ的中點(diǎn)為N x y 在Rt PBQ中 PN BN 設(shè)O為坐標(biāo)原點(diǎn) 連接ON 圖略 則ON PQ 所以 OP 2 ON 2 PN 2 ON 2 BN 2 所以x2 y2 x 1 2 y 1 2 4 故線段PQ中點(diǎn)的軌跡方程為x2 y2 x y 1 0 加固訓(xùn)練 2016 宜昌模擬 已知?jiǎng)訄AP過(guò)定點(diǎn)A 3 0 且與圓B x 3 2 y2 64相切 點(diǎn)P的軌跡為曲線C 設(shè)Q為曲線C上 不在x軸上 的動(dòng)點(diǎn) 過(guò)點(diǎn)A作OQ的平行線交曲線C于M N兩點(diǎn) 1 求曲線C的方程 2 求 MNQ的面積S的最大值 解析 1 因?yàn)閯?dòng)圓P過(guò)定點(diǎn)A 3 0 且與圓B x 3 2 y2 64相切 所以點(diǎn)P到兩定點(diǎn)A 3 0 和B 3 0 距離之和等于定圓B的半徑 所以 PA PB 8 所以點(diǎn)P的軌跡是以A B為焦點(diǎn) 長(zhǎng)軸為8的橢圓 所以曲線C的方程為 2 因?yàn)镼不在x軸上 所以設(shè)直線OQ x my 因?yàn)檫^(guò)點(diǎn)A作OQ的平行線交曲線C于M N兩點(diǎn) 所以直線MN x my 3 設(shè)M x1 y1 N x2 y2 Q x3 y3 則 x1 3 y1 x2 3 y2 聯(lián)立方程組消去x 得 7m2 16 y2 42my 49 0 因?yàn)镸N OQ 所以S S MNQ SMNO OA y1 y2 當(dāng)且僅當(dāng)m2 時(shí)取等號(hào) 所以所求最大值為 考向三與圓有關(guān)的最值問題 考情快遞 考題例析 命題方向1 代數(shù)式的最值問題 典例3 1 2016 太原模擬 已知點(diǎn)P是直線3x 4y 8 0上的動(dòng)點(diǎn) 點(diǎn)C是圓x2 y2 2x 2y 1 0的圓心 那么 PC 的最小值是 2 2016 南寧模擬 已知M m n 為圓C x2 y2 4x 14y 45 0上任意一點(diǎn) 求m 2n的最大值 求的最大值和最小值 解題導(dǎo)引 1 PC 的最小值就是點(diǎn)C到直線3x 4y 8 0的距離 2 可設(shè)m 2n t 將m 2n t看成直線方程 利用該直線與圓相交或相切即可求出t的最值 可利用的幾何意義求解 規(guī)范解答 1 點(diǎn)C到直線3x 4y 8 0上的動(dòng)點(diǎn)P的最小距離即為點(diǎn)C到直線3x 4y 8 0的距離 而圓心C的坐標(biāo)是 1 1 因此最小距離為答案 3 2 因?yàn)閤2 y2 4x 14y 45 0的圓心C 2 7 半徑r 設(shè)m 2n t 將m 2n t看成直線方程 因?yàn)樵撝本€與圓有公共點(diǎn) 所以圓心到直線的距離d 解上式得 所以 所求的最大值為16 記點(diǎn)Q 2 3 因?yàn)楸硎局本€MQ的斜率 設(shè)直線MQ的方程為y 3 k x 2 即kx y 2k 3 0 則由直線MQ與圓C有公共點(diǎn) 所以可得所以的最大值為2 最小值為2 母題變式 1 若本例 1 設(shè)點(diǎn)A為圓上的動(dòng)點(diǎn) 試求 PA 的最小值 解析 點(diǎn)C到直線3x 4y 8 0上的動(dòng)點(diǎn)P的最小距離即為點(diǎn)C到直線3x 4y 8 0的距離 而圓心C的坐標(biāo)是 1 1 圓心C與點(diǎn)P最小距離為又因?yàn)閳Ax2 y2 2x 2y 1 0的半徑為1 所以 PA 的最小值為3 1 2 2 若將本例 1 的條件 P是直線3x 4y 8 0上的動(dòng)點(diǎn) 改為 P 4 5 試求點(diǎn)P到圓上的點(diǎn)的距離的最大值與最小值 解析 因?yàn)辄c(diǎn)P 4 5 與圓心C 1 1 的距離 PC 5 所以點(diǎn)P與圓上的點(diǎn)的距離的最大值為5 1 6 最小值為5 1 4 命題方向2 與圓有關(guān)的范圍問題 典例4 2014 全國(guó)卷 設(shè)點(diǎn)M x0 1 若在圓O x2 y2 1上存在點(diǎn)N 使得 OMN 45 則x0的取值范圍是 解題導(dǎo)引 可結(jié)合圖象 探究滿足條件的x0的取值范圍 規(guī)范解答 建立三角不等式 利用兩點(diǎn)間距離公式找到x0的取值范圍 如圖 過(guò)點(diǎn)M作 O的切線 切點(diǎn)為N 連接ON M點(diǎn)的縱坐標(biāo)為1 MN與 O相切于點(diǎn)N 設(shè) OMN 則 45 即sin 即而ON 1 所以O(shè)M 因?yàn)镸為 x0 1 所以所以x02 1 所以 1 x0 1 所以x0的取值范圍為 1 1 答案 1 1 技法感悟 1 與圓有關(guān)的最值問題的幾何轉(zhuǎn)化法 1 形如 形式的最值問題 可轉(zhuǎn)化為動(dòng)直線斜率的最值問題 2 形如t ax by形式的最值問題 可轉(zhuǎn)化為動(dòng)直線截距的最值問題 3 形如 x a 2 y b 2形式的最值問題 可轉(zhuǎn)化為動(dòng)點(diǎn)到定點(diǎn)的距離的平方的最值問題 2 與圓有關(guān)的參數(shù)范圍問題常見思路 1 直接利用條件 畫出幾何圖形 結(jié)合圖形用幾何法求參數(shù)的范圍 2 根據(jù)位置關(guān)系列不等式組 用代數(shù)法求參數(shù)范圍 3 構(gòu)造關(guān)于參數(shù)的函數(shù)關(guān)系 借助函數(shù)思想求參數(shù)的范圍 題組通關(guān) 1 2016 溫州模擬 已知點(diǎn)P x y 是直線kx y 4 0 k 0 上一動(dòng)點(diǎn) PA PB是圓C x2 y2 2y 0的兩條切線 A B為切點(diǎn) 若四邊形PACB的最小面積是2 則k的值為 A 1B 3C 2D 解析 選C 圓C的方程可化為x2 y 1 2 1 因?yàn)樗倪呅蜳ACB的最小面積是2 且此時(shí)切線長(zhǎng)為2 故圓心 0 1 到直線kx y 4 0的距離為即解得k 2 又k 0 所以k 2 2 2016 廣州模擬 如果直線l將圓C x 2 2 y 3 2 13平分 那么坐標(biāo)原點(diǎn)O到直線l的最大距離為 解析 由題意知 直線l過(guò)圓心C 2 3 當(dāng)直線OC l時(shí) 坐標(biāo)原點(diǎn)到直線l的距離最大 OC 答案 3 2016 衡水模擬 已知圓x2 y2 2x 4y a 0關(guān)于直線y 2x b成軸對(duì)稱 則a b的取值范圍是 解析 圓的方程化為 x 1 2 y 2 2 5 a 所以其圓心為 1 2 且5 a 0 即a 5 又圓關(guān)于直線y 2x b成軸對(duì)稱 所以圓心在直線y 2x b上 所以2 2 b 所以b 4 所以a b a 4 1 答案 1 4 2016 長(zhǎng)春模擬 若直線y x b與曲線y 有公共點(diǎn) 則b的取值范圍是 解析 由y 得 x 2 2 y 3 2 4 1 y 3 所以曲線y 是半圓 如圖中實(shí)線所示 當(dāng)直線y x b與圓相切時(shí) 所以b 1 由圖可知b 1 所以b的取值范圍是 1 3 答案 1 b 3- 1.請(qǐng)仔細(xì)閱讀文檔,確保文檔完整性,對(duì)于不預(yù)覽、不比對(duì)內(nèi)容而直接下載帶來(lái)的問題本站不予受理。
- 2.下載的文檔,不會(huì)出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請(qǐng)點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
14.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁(yè)顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國(guó)旗、國(guó)徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對(duì)作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 高考數(shù)學(xué)一輪復(fù)習(xí) 第八章 平面解析幾何 8.3 圓的方程課件理 高考 數(shù)學(xué) 一輪 復(fù)習(xí) 第八 平面 解析幾何 方程 課件
鏈接地址:http://m.jqnhouse.com/p-5626524.html