EDA課程設(shè)計(jì)副本

上傳人:細(xì)水****9 文檔編號:57814364 上傳時間:2022-02-24 格式:DOC 頁數(shù):20 大?。?,017KB
收藏 版權(quán)申訴 舉報(bào) 下載
EDA課程設(shè)計(jì)副本_第1頁
第1頁 / 共20頁
EDA課程設(shè)計(jì)副本_第2頁
第2頁 / 共20頁
EDA課程設(shè)計(jì)副本_第3頁
第3頁 / 共20頁

下載文檔到電腦,查找使用更方便

5 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《EDA課程設(shè)計(jì)副本》由會員分享,可在線閱讀,更多相關(guān)《EDA課程設(shè)計(jì)副本(20頁珍藏版)》請?jiān)谘b配圖網(wǎng)上搜索。

1、 課程設(shè)計(jì)說明書 名稱 任意波形產(chǎn)生電路設(shè)計(jì)  院  系 班 級 姓 名   系 主 任 教研室主任 指導(dǎo)教師 第一章 緒論 電子設(shè)計(jì)自動化(Electronic Design Automation)技術(shù)以計(jì)算機(jī)為基礎(chǔ)工作平臺,以微電子技術(shù)為物理基礎(chǔ),以現(xiàn)代電子技術(shù)設(shè)計(jì)技術(shù)為靈魂,采用計(jì)算機(jī)軟件工具,最終實(shí)現(xiàn)電子系統(tǒng)或?qū)S眉呻娐返脑O(shè)計(jì)。EDA技術(shù)的使用包括兩類:一類是專用集成電路芯片的設(shè)計(jì)研發(fā)人員;另一類是廣大電子線路設(shè)計(jì)人員。

2、后者并不具備專門的IC深層次的知識。EDA技術(shù)可簡單概括為以大規(guī)??删幊踢壿嬈骷樵O(shè)計(jì)載體,通過硬件描述語言或?qū)⑦壿媹D輸入給相應(yīng)EDA開發(fā)軟件,經(jīng)過編譯和仿真,最終將所設(shè)計(jì)的電路下載到設(shè)計(jì)載體中,從而完成系統(tǒng)設(shè)計(jì)任務(wù)的一門新技術(shù)。 1.1 EDA技術(shù)發(fā)展歷程 伴隨著計(jì)算機(jī)、集成電路、電子系統(tǒng)設(shè)計(jì)的發(fā)展,EDA技術(shù)經(jīng)歷了計(jì)算機(jī)輔助設(shè)計(jì)、計(jì)算機(jī)輔助工程設(shè)計(jì)和電子設(shè)計(jì)自動化三個發(fā)展階段。 (1)70年代為計(jì)算機(jī)輔助設(shè)計(jì)CAD(ComputerAidedDe-sign)階段。這一階段人們將電子設(shè)計(jì)中涉及到的許多計(jì)算開始用計(jì)算機(jī)程序?qū)崿F(xiàn)。 (2)80年代為計(jì)算機(jī)輔助工程CAE(Computer

3、 Aided Engineeirng)階段。這一階段出現(xiàn)了一些繪圖軟件,減輕了設(shè)計(jì)人員的勞動。 (3)90年代以來為電子設(shè)計(jì)自動化EDA(Electminic Design Automation)階段。這一階段人們借助開發(fā)軟件的幫助,可以將設(shè)計(jì)過程中的許多細(xì)節(jié)問題拋開,而將注意力集中在產(chǎn)品的總體開發(fā)上,提高了設(shè)計(jì)效率,縮短了產(chǎn)品的研制周期,實(shí)現(xiàn)了真正意義上的電子設(shè)計(jì)自動化。 1.2 EDA技術(shù)的應(yīng)用 EDA技術(shù)在進(jìn)入21世紀(jì)后,得到了更大的發(fā)展應(yīng)用,突出表現(xiàn)在以下幾個方面: 1.在FPGA上實(shí)現(xiàn)DSP應(yīng)用成為可能,用純數(shù)字邏輯進(jìn)行DSP模塊的設(shè)計(jì),使得高速DSP實(shí)現(xiàn)成為現(xiàn)實(shí),并有力地

4、推動了軟件無線電技術(shù)的實(shí)用化和發(fā)展。基于FPGA的DSP技術(shù),為高速數(shù)字信號處理算法提供了實(shí)現(xiàn)途徑。 2.嵌入式處理器軟核的成熟,使得SOPC(System On a Programmable Chip)步入大規(guī)模應(yīng)用階段,在一片F(xiàn)PGA中實(shí)現(xiàn)一個完備的數(shù)字處理系統(tǒng)成為可能。 3.使電子設(shè)計(jì)成果以自主知識產(chǎn)權(quán)的方式得以明確表達(dá)和確認(rèn)成為可能。 4.在仿真和設(shè)計(jì)兩方面支持標(biāo)準(zhǔn)硬件描述語言且功能強(qiáng)大的EDA軟件不斷推出。 目前EDA技術(shù)已在各大公司、企事業(yè)單位和科研教學(xué)部門廣泛使用。例如在飛機(jī)制造過程中,從設(shè)計(jì)、性能測試及特性分析直到飛行模擬,都可能涉及到EDA技術(shù)。 1.3 EDA技

5、術(shù)的設(shè)計(jì)方法 數(shù)字系統(tǒng)的設(shè)計(jì)可采用不同的方法:一種為由底向上的設(shè)計(jì)方法,也稱傳統(tǒng)的設(shè)計(jì)方法;另一種為自頂向下的設(shè)計(jì)方法,也稱現(xiàn)代的設(shè)計(jì)方法。 原理圖/VHDL文本編輯 綜 合 FPGA/CPLD適配 時序與功能仿真 FPGA/CPLD編程下載 FPGA/CPLD器件和電路系統(tǒng) 由底向上的設(shè)計(jì)方法是傳統(tǒng)的IC和PCB的設(shè)計(jì)方法。采用由底向上的設(shè)計(jì)方法需要設(shè)計(jì)者先定義和設(shè)計(jì) 每個基本模塊,然后對這些模塊進(jìn)行連線以完成整體設(shè)計(jì)。在IC設(shè)計(jì)復(fù)雜程度低于10 000門時,常采用這種設(shè)計(jì)方法,但是隨著設(shè)計(jì)復(fù)雜程度的增加,該方法會 產(chǎn)生產(chǎn)品生產(chǎn)周期長、可靠性低、 開發(fā)費(fèi)用高等問題。

6、 EDA技術(shù)采用現(xiàn)代的設(shè)計(jì)方法 ——自頂向下的設(shè)計(jì)方法。采用自 頂向下技術(shù)進(jìn)行設(shè)計(jì)可分為三個主 要階段:系統(tǒng)設(shè)計(jì)、系統(tǒng)的綜合優(yōu) 化和系統(tǒng)實(shí)現(xiàn),各個階段之間并沒 有絕對的界限。 EDA設(shè)計(jì)流程為:設(shè)計(jì)輸入、 時序與功能仿真、綜合、適配與下 載。右圖圖1-1是運(yùn)用EDA技術(shù)進(jìn) 圖1-1 EDA技術(shù)數(shù)字 行數(shù)字系統(tǒng)設(shè)計(jì)的流程圖。 系統(tǒng)設(shè)計(jì)的流程圖

7、1.3 數(shù)字系統(tǒng)設(shè)計(jì) 1.3.1 數(shù)字系統(tǒng)設(shè)計(jì)的模型 數(shù)字系統(tǒng)的設(shè)計(jì)就是用規(guī)范的和形式化的方式作出正確的系統(tǒng)邏輯功能的描述,詳細(xì)反映系統(tǒng)的邏輯進(jìn)程和具體的邏輯運(yùn)算操作,并選用具體的電路來實(shí)現(xiàn)所描述的系統(tǒng)邏輯。用于數(shù)字系統(tǒng)設(shè)計(jì)的EDA軟件有3類:—是允許用戶用高級語言(如C語言)描述數(shù)字系統(tǒng)的邏輯功能,并能自動實(shí)現(xiàn)電路的設(shè)計(jì),這種軟件的自動化程度最高;二是允許用戶以邏輯流程圖的方式描述系統(tǒng)的邏輯關(guān)系,軟件自動將邏輯流程圖設(shè)計(jì)成數(shù)字電路,這種軟件的自動化程度次之:三是要求用戶先以人工方式設(shè)計(jì)出數(shù)字電路,再用電路圖方式或硬件描述語言的方式輸入計(jì)算機(jī),由EDA軟件作優(yōu)化、仿真等后續(xù)處理。 1.

8、3.2 數(shù)字系統(tǒng)設(shè)計(jì)的基本步驟 數(shù)字系統(tǒng)設(shè)計(jì)的基本步驟有:系統(tǒng)任務(wù)分析,確定邏輯算法,系統(tǒng)劃分,系統(tǒng)邏輯描述,邏輯電路設(shè)計(jì),仿真、驗(yàn)證,物理實(shí)現(xiàn)。 (1)系統(tǒng)任務(wù)分析:數(shù)字系統(tǒng)設(shè)計(jì)中的第一步是明確系統(tǒng)的任務(wù)。設(shè)計(jì)任務(wù)書可用各種方式提出對整個數(shù)字系統(tǒng)的邏輯要求,常用的方式有自然語言、邏輯語言描述、邏輯流程圖、時序圖等。 (2)確定邏輯算法:實(shí)現(xiàn)系統(tǒng)邏輯運(yùn)算的方法稱為邏輯算法,簡稱算法。一個數(shù)字系統(tǒng)的邏輯運(yùn)算往往有多種算法,設(shè)計(jì)者的任務(wù)要比較各種算法的優(yōu)劣,取長補(bǔ)短,從中確定最合理的一種。數(shù)字系統(tǒng)的算法是邏輯設(shè)計(jì)的基礎(chǔ),算法不同,則系統(tǒng)的結(jié)構(gòu)也不同,算法的合理與否直接影響系統(tǒng)結(jié)構(gòu)的合理性。

9、 (3)系統(tǒng)劃分:當(dāng)算法明確后,應(yīng)根據(jù)算法構(gòu)造系統(tǒng)的硬件框架(也稱為系統(tǒng)框圖),將系統(tǒng)劃分為若干個部分,各部分分別承擔(dān)算法中不同的邏輯操作功能。 (4)系統(tǒng)邏輯描述:當(dāng)系統(tǒng)中各個子系統(tǒng)和模塊的邏輯功能和結(jié)構(gòu)確定后,則需采用比較規(guī)范的形式來描述系統(tǒng)的邏輯功能。對系統(tǒng)的邏輯描述可先采用較粗略的邏輯流程圖,再將邏輯流程圖逐步細(xì)化為詳細(xì)邏輯流程圖,最后將詳細(xì)邏輯流程圖表示成與硬件有對應(yīng)關(guān)系的形式,為下一步的電路級設(shè)計(jì)提供依據(jù)。 (5)邏輯電路設(shè)計(jì):電路級設(shè)計(jì)是指選擇合理的器件及連接關(guān)系以實(shí)現(xiàn)系統(tǒng)邏輯要求。電路級設(shè)計(jì)的結(jié)果通常采用兩種方式來表達(dá):電路圖方式和硬件描述語言方式。EDA軟件支持這兩種方式

10、的輸入。 (6)仿真、驗(yàn)證:當(dāng)電路設(shè)計(jì)完成后必須驗(yàn)證設(shè)計(jì)是否正確。在早期,只能通過搭試硬件電路才能得到設(shè)計(jì)的結(jié)果。目前,數(shù)字電路設(shè)計(jì)的EDA軟件都有具有驗(yàn)證(也稱為仿真、電路模擬)的功能,先通過電路驗(yàn)證(仿真),當(dāng)驗(yàn)證結(jié)果正確后再進(jìn)行實(shí)際電路的測試。由于EDA軟件的驗(yàn)證結(jié)果十分接近實(shí)際結(jié)果,因此,可極大地提高電路設(shè)計(jì)的效率。 (7)物理實(shí)現(xiàn):最終用實(shí)際的器件實(shí)現(xiàn)數(shù)字系統(tǒng)的設(shè)計(jì),用儀表測量設(shè)計(jì)的電路是否符合設(shè)計(jì)要求?,F(xiàn)在的數(shù)字系統(tǒng)往往采用大規(guī)模和超大規(guī)模集成電路,由于器件集成度高、導(dǎo)線密集,故一般在電路設(shè)計(jì)完成后即設(shè)計(jì)印刷電路板,在印刷電路板上組裝電路進(jìn)行測試。需要注意的是、印刷電路板本身的

11、物理特性也會影響電路的邏輯關(guān)系。 1.4 Quartus II 介紹 Quartus II 是MAX+plus II的升級版本,是ALTERA公司的第四代開發(fā)軟件,支持原理圖、VHDL、VerilogHDL以及AHDL(Altera Hardware Description Language)等多種設(shè)計(jì)輸入形式,編譯快速,器件編程直接、易懂,它能夠支持邏輯門數(shù)在百萬門以上的邏輯器件的開發(fā),并且為第三方工具提供了無縫接口。Quartus II軟件包的編程器是系統(tǒng)的核心,提供強(qiáng)大的設(shè)計(jì)處理功能,設(shè)計(jì)者可以通過添加特定的約束條件來提高芯片的利用率。 Altera Quartus II 作為一

12、種可編程邏輯的設(shè)計(jì)環(huán)境, 由于其強(qiáng)大的設(shè)計(jì)能力和直觀易用的接口,越來越受到數(shù)字系統(tǒng)設(shè)計(jì)者的歡迎。 第二章:設(shè)計(jì)要求 電路要求可以產(chǎn)生方波、正弦波、三角波,波形的頻率可調(diào),通過控制開關(guān)控制產(chǎn)生的波形,并通過控制按鍵控制設(shè)計(jì)信號的頻率,改變頻率的方法可以采用分頻和DDS的原理進(jìn)行控制信號頻率。并進(jìn)行D/A轉(zhuǎn)換電路與濾波電路的設(shè)計(jì),通過采用施密特觸發(fā)器對波形進(jìn)行整形,設(shè)計(jì)一頻率測量電路對所產(chǎn)生的頻率進(jìn)行測量,通過數(shù)碼管顯示出來,并在數(shù)碼管上顯示當(dāng)前的波形代碼。 至少產(chǎn)生的波形如下:            圖2-1 正弦波形     圖2-2 三角波形   

13、          圖2-3 方波波形        圖2-4 特殊波形 第三章:系統(tǒng)的設(shè)計(jì) 3.1 設(shè)計(jì)思路 采用由底向上的設(shè)計(jì)方法,根據(jù)系統(tǒng)對硬件的要求詳細(xì)編制技術(shù)規(guī)格書,畫出系統(tǒng)控制流程圖,仔細(xì)分析系統(tǒng)要求達(dá)到的各個功能,將系統(tǒng)的功能進(jìn)行細(xì)化,合理地劃分功能模塊,并畫出系統(tǒng)的功能框圖;進(jìn)行各功能模塊的設(shè)計(jì),運(yùn)用VHDL語言設(shè)計(jì)出各個功能模塊;在軟件環(huán)境下導(dǎo)出各個功能框圖,在將各個模塊按系統(tǒng)要求達(dá)到的功能連接起來,做出系統(tǒng)的原理圖;編譯、調(diào)試完成后,在下載到硬件結(jié)構(gòu)中,進(jìn)行硬件調(diào)試。 (1)提出設(shè)計(jì)說明書,即用自然語言表達(dá)系統(tǒng)項(xiàng)目的功能特點(diǎn)和技術(shù)參數(shù)等

14、。 (2)建立VHDL行為模型,這一步是將設(shè)計(jì)說明書轉(zhuǎn)化為VHDL行為模型。 (3)VHDL行為仿真。這一階段可以利用VHDL仿真器(如ModelSim)對頂層系統(tǒng)的行為模型進(jìn)行仿真測試,檢查模擬結(jié)果,繼而進(jìn)行修改和完善。 (4)VHDL-RTL級建模。如上所述,VHDL只有部分語句集合可用于硬件功能行為的建模,因此在這一階段,必須將VHDL的行為模型表達(dá)為VHDL行為代碼(或稱VHDL-RTL級模型)。 (5)前端功能仿真。 (6)邏輯綜合。 (7)測試向量生成。這一階段主要是針對ASIC設(shè)計(jì)的。FPGA設(shè)計(jì)的時序測試文件主要產(chǎn)生于適配器。對ASIC的測試向量文件是綜合器結(jié)合含有

15、版圖硬件特性的工藝庫后產(chǎn)生的,用于對ASIC的功能測試。 (8)功能仿真。利用獲得的測試向量對ASIC的設(shè)計(jì)系統(tǒng)和子系統(tǒng)的功能進(jìn)行仿真。 (9)結(jié)構(gòu)綜合。主要將綜合產(chǎn)生的表達(dá)邏輯連接關(guān)系的網(wǎng)表文件,結(jié)合具體的目標(biāo)硬件環(huán)境進(jìn)行標(biāo)準(zhǔn)單元調(diào)用、布局、布線和滿足約束條件的結(jié)構(gòu)優(yōu)化配置,即結(jié)構(gòu)綜合。 (10)門級時序仿真。在這一級中將使用門級仿真器或仍然使用VHDL仿真器(因?yàn)榻Y(jié)構(gòu)綜合后能同步生成VHDL格式的時序仿真文件)進(jìn)行門級時序仿真,在計(jì)算機(jī)上了解更接近硬件目標(biāo)器件工作的功能時序。 (11)硬件測試。這是對最后完成的硬件系統(tǒng)(如ASIC或FPGA)進(jìn)行檢查和測試。 3.2 設(shè)計(jì)流程

16、 1、系統(tǒng)任務(wù)分析:數(shù)字系統(tǒng)設(shè)計(jì)中的第一步是明確系統(tǒng)的任務(wù)。 2、確定邏輯算法:實(shí)現(xiàn)系統(tǒng)邏輯運(yùn)算的方法稱為邏輯算法,簡稱算法。數(shù)字系統(tǒng)的算法是邏輯設(shè)計(jì)的基礎(chǔ),算法不同,則系統(tǒng)的結(jié)構(gòu)也不同,算法的合理與否直接影響系統(tǒng)結(jié)構(gòu)的合理性。 3、系統(tǒng)劃分:當(dāng)算法明確后,應(yīng)根據(jù)算法構(gòu)造系統(tǒng)的硬件框架(也稱為系統(tǒng)框圖),將系統(tǒng)劃分為若干個部分,各部分分別承擔(dān)算法中不同的邏輯操作功能。 4、系統(tǒng)邏輯描述:對系統(tǒng)的邏輯描述可先采用較粗略的邏輯流程圖,再將邏輯流程圖逐步細(xì)化為詳細(xì)邏輯流程圖,最后將詳細(xì)邏輯流程圖表示成與硬件有對應(yīng)關(guān)系的形式,為下一步的電路級設(shè)計(jì)提供依據(jù)。 5、邏輯電路設(shè)計(jì)

17、:電路級設(shè)計(jì)是指選擇合理的器件及連接關(guān)系以實(shí)現(xiàn)系統(tǒng)邏輯要求。電路級設(shè)計(jì)的結(jié)果通常采用兩種方式來表達(dá):電路圖方式和硬件描述語言方式。EDA軟件支持這兩種方式的輸入。 6、仿真、驗(yàn)證:當(dāng)電路設(shè)計(jì)完成后必須驗(yàn)證設(shè)計(jì)是否正確。目前,數(shù)字電路設(shè)計(jì)的EDA軟件都有具有驗(yàn)證(也稱為仿真、電路模擬)的功能,先通過電路驗(yàn)證(仿真),當(dāng)驗(yàn)證結(jié)果正確后再進(jìn)行實(shí)際電路的測試。 3.3 設(shè)計(jì)步驟及程序 分頻模塊 LIBRARY IEEE; USE IEEE.STD_LOGIC_1164.ALL; USE IEEE.STD_LOGIC

18、_UNSIGNED.ALL; ENTITY fp IS port(clk:in std_logic; --input 1K Hz k:in std_logic_vector(3 downto 0); clko:buffer std_logic); --out 1 hz end fp; architecture a of fp is signal temp:std_logic_vector(3 downto 0); begin process(clk) begin if clk'event and clk='1' then if temp

19、en temp<=temp+1; else temp<="0000"; clko<=not clko; end if;end if; end process; end a; 正弦函數(shù)模塊 library ieee; use ieee.std_logic_1164.all; use ieee.std_logic_arith.all; use ieee.std_logic_unsigned.all; entity sin is port(clk4:in std_logic; k::

20、in integer range 15 downto 0; dd4:out integer range 255 downto 0); end sin; architecture dacc of sin is signal q: integer range 63 downto 0; begin process(clk4) begin if (clk4'event and clk4='1') then q<=q+k; end if;

21、 end process; process(q) begin case q is when 00=>dd4<=255; when 01=>dd4<=254; when 02=>dd4<=253; when 36=>dd4<=10; when 03=>dd4<=250; when 37=>dd4<=15; when 04=>dd4<=245;

22、when 41=>dd4<=47; when 05=>dd4<=240; when 38=>dd4<=21; when 06=>dd4<=234; when 39=>dd4<=29; when 07=>dd4<=226; when 40=>dd4<=37; when 08=>dd4<=218; when 41=>dd4<=47; when 09=>dd4<=208; when 42=>dd4<=57; when 10=>dd

23、4<=198; when 43=>dd4<=67; when 11=>dd4<=188; when 44=>dd4<=79; when 12=>dd4<=176; when 45=>dd4<=90; when 13=>dd4<=165; when 46=>dd4<=103; when 14=>dd4<=152; when 47=>dd4<=115; when 15=>dd4<=140; when

24、 48=>dd4<=128 when 16=>dd4<=128; when 49=>dd4<=140; when 17=>dd4<=115; when 50=>dd4<=165; when 18=>dd4<=103; when 51=>dd4<=176; when 19=>dd4<=90; when 52=>dd4<=188; when 20=>dd4<=79; when 53=>dd4<=198; when 21=>d

25、d4<=67; when 54=>dd4<=208; when 22=>dd4<=57; when 55=>dd4<=218; when 23=>dd4<=47; when 56=>dd4<=226; when 24=>dd4<=37; when 57=>dd4<=234; when 25=>dd4<=29; when 58=>dd4<=240; when 26=>dd4<=21;

26、when 59=>dd4<=245; when 27=>dd4<=15; when 60=>dd4<=250; when 28=>dd4<=10; when 61=>dd4<=253; when 29=>dd4<=5; when 62=>dd4<=254; when 30=>dd4<=2; when 63=>dd4<=255; when 31=>dd4<=1; when 63=>dd4<=255; when

27、32=>dd4<=0; when others=>null; when 33=>dd4<=1; end case; when 34=>dd4<=2; end process; when 35=>dd4<=5; end dacc; 三角波 library ieee; use ieee.std_logic_1164.al

28、l; use ieee.std_logic_unsigned.all; entity tria is port(clk3:in std_logic; k:in integer range 15 downto 0; dd3:out integer range 255 downto 0); end tria; architecture dacc of tria is signal b:std_logic; signal c:integer range 255 downto 0; begin process(clk3) begin if

29、(clk3'event and clk3='1') then if(b='0') then c<=c+k; if(c>=250) then b<='1'; end if; elsif(b='1') then c<=c-k; if(c<=1) then b<='0'; end if; end if; dd3<=c; end if; end process; end dacc; 方波

30、 library ieee; use ieee.std_logic_1164.all; use ieee.std_logic_arith.all; use ieee.std_logic_unsigned.all; entity square is port(clk1 : in std_logic; k:in integer range 15 downto 0; dd1 : buffer integer range 255 downto 0); end square; architecture dacc of square is

31、 signal q: integer range 255 downto 0; begin process(clk1) begin if (clk1'event and clk1='1') then q<=q+k; end if; end process; process(q) begin case q is when 0 to 127=>dd1<=255; when 128 to 255=>dd1<=127; when others=>null; end case; end process; end dac

32、c; 特殊波形 library ieee; use ieee.std_logic_1164.all; use ieee.std_logic_arith.all; use ieee.std_logic_unsigned.all; entity sintra is port(clk4:in std_logic; k:in integer range 15 downto 0; dd4:out integ

33、er range 255 downto 0); end sintra; architecture dacc of sintra is signal q: integer range 63 downto 0; begin process(clk4) begin if (clk4'event and clk4='1') then q<=q+k; end if; end process; process(q) begin case q is when 00=>dd4<=255; when 01=>dd4<

34、=254; when 02=>dd4<=253; when 36=>dd4<=10; when 03=>dd4<=250; when 37=>dd4<=15; when 04=>dd4<=245; when 41=>dd4<=47; when 05=>dd4<=240; when 38=>dd4<=21; when 06=>dd4<=234; when 39=>

35、dd4<=29; when 07=>dd4<=226; when 40=>dd4<=37; when 08=>dd4<=218; when 41=>dd4<=47; when 09=>dd4<=208; when 42=>dd4<=57; when 10=>dd4<=198; when 43=>dd4<=67; when 11=>dd4<=188; when 44=>dd4<=79; when 12=>dd4<=176;

36、 when 45=>dd4<=90; when 13=>dd4<=165; when 46=>dd4<=103; when 14=>dd4<=152; when 47=>dd4<=115; when 15=>dd4<=140; when 48=>dd4<=128 when 16=>dd4<=128; when 49=>dd4<=140; when 17=>dd4<=115; when 50=>dd4

37、<=165; when 18=>dd4<=103; when 51=>dd4<=176; when 19=>dd4<=90; when 52=>dd4<=188; when 20=>dd4<=79; when 53=>dd4<=198; when 21=>dd4<=67; when 54=>dd4<=208; when 22=>dd4<=57; when 55=>dd4<=218; when 23=>dd4<=47;

38、 when 56=>dd4<=226; when 24=>dd4<=37; when 57=>dd4<=234; when 25=>dd4<=29; when 58=>dd4<=240; when 26=>dd4<=21; when 59=>dd4<=245; when 27=>dd4<=15; when 60=>dd4<=250; when 28=>dd4<=10; when 61

39、=>dd4<=253; when 29=>dd4<=5; when 62=>dd4<=254; when 30=>dd4<=2; when 63=>dd4<=255; when 31=>dd4<=1; when 63=>dd4<=255; when 32=>dd4<=0; when others=>null; when 33=>dd4<=1; end case; when 34=>dd4<=2;

40、 end process; when 35=>dd4<=5; end dacc; 分頻1Hz LIBRARY IEEE; USE IEEE.STD_LOGIC_1164.ALL; USE IEEE.STD_LOGIC_UNSIGNED.ALL; ENTITY fp1HZ IS PORT(clk:in std_logic; --10M clk1Hz: buffer STD_LOGIC);

41、 END fp1hz; ARCHITECTURE one OF fp1hz IS SIGNAL test: integer range 0 to 6000000; begin process(clk) begin if clk'event and clk='1' then if test<5000000 then test<=test+1; else test<=0; clk1hz<=not clk1hz; end if; end if; end process; end one; 測頻模塊 LIBRA

42、RY IEEE; USE IEEE.STD_LOGIC_1164.ALL; USE IEEE.STD_LOGIC_UNSIGNED.ALL; ENTITY freq IS PORT(fsin: in STD_LOGIC; clk: IN STD_LOGIC; dout0,dout1,dout2,dout3: OUT STD_LOGIC_VECTOR(3 DOWNTO 0)); END freq; ARCHITECTURE one OF freq IS SIGNAL test_en: STD_LOGIC; SIGNAL

43、clear: STD_LOGIC; SIGNAL data: STD_LOGIC_VECTOR(15 DOWNTO 0); BEGIN PROCESS(clk) BEGIN IF clk'event AND clk='1' THEN test_en<=NOT test_en; END IF; END PROCESS; clear<=NOT clk AND NOT test_en; PROCESS(fsin) BEGIN IF clear='1' THEN data<="0000"; ELSIF fsin'ev

44、ent AND fsin='0' THEN IF data(15 DOWNtO 0)="1001" THEN data<=data+"0111"; elsIF data(11 DOWNtO 0)="" THEN data<=data+""; ELSIF data(7 DOWNTO 0)="10011001" THEN data<=data+"01100111"; ELSIF data(3 DOWNTO 0)="1001" THEN data<=data+"0111"; ELSE data<=data+1;

45、 END IF; END IF; END PROCESS; PROCESS(test_en,data) BEGIN IF test_en'event AND test_en='0' THEN dout0<=data(3 downto 0); dout1<=data(7 downto 4); dout2<=data(11 downto 8); dout3<=data(15 downto 12); END IF;

46、 END PROCESS; END one; 控制模塊 library ieee; use ieee.std_logic_1164.all; use ieee.std_logic_arith.all; use ieee.std_logic_unsigned.all entity control is port(sel:in std_logic_vector(1 downto 0); k0,k1,k2,k3:in integer range 255 downto 0; qout:out i

47、nteger range 255 downto 0); end control; architecture a of control is begin process(sel,k0,k1,k2,k3) begin if sel=“00” then   qout<=k0; elsif sel=“01” then   qout<=k1; elsif sel=“10” then   qout<=k2; elsif se

48、l=“11” then   qout<=k3; end if; end process; end a; 3.4 電路模塊組成及引腳設(shè)置 3.4.1路模塊組成 3.4.2引腳設(shè)置 3.5 硬件實(shí)現(xiàn)及調(diào)試結(jié)果 下載編譯成功后,定義芯片管腳,開關(guān)K1、K2、K3控制分頻系數(shù),K14、K15為Sel選擇信號,Sel=00時為正弦波,Sel=01時為三角波,Sel=10時為方波,Sel=11時為特殊波形。將示波器連接到硬件上,觀察輸出波形。 第四章 課程設(shè)計(jì)總

49、結(jié) 通過這次課程設(shè)計(jì),我受益匪淺。我們不僅鞏固了課上學(xué)到的知識,提高了我們實(shí)際動手的能力,而且了解到理論聯(lián)系實(shí)際和團(tuán)結(jié)協(xié)作的重要性。同時我們也意識到在以后的學(xué)習(xí)和生活中要始終保持一絲不茍的態(tài)度,杜絕馬虎的態(tài)度,只有理論知識是遠(yuǎn)遠(yuǎn)不夠的,只有把所學(xué)的理論知識與實(shí)踐相結(jié)合起來,從理論中得出結(jié)論,才能真正為社會服務(wù),從而提高自己的實(shí)際動手能力和獨(dú)立思考的能力。在設(shè)計(jì)的過程中遇到問題,可以說得是困難重重,這畢竟第一次做的,難免會遇到過各種各樣的問題,同時在設(shè)計(jì)的過程中發(fā)現(xiàn)了自己的不足之處,對以前所學(xué)過的知識理解得不夠深刻,掌握得不夠牢固。 通過本次設(shè)計(jì),增加自己的理論知識,系統(tǒng)的了解了波形發(fā)生器的

50、設(shè)計(jì)流程,尤其是硬、軟件的設(shè)計(jì)方法,掌握了波形發(fā)生器的基本功能及編程方法,掌握了它的一般原理,也進(jìn)一步掌握了QuartusⅡ的使用。而且也開拓了思路,鍛煉了實(shí)踐動手能力,提高了分工協(xié)作能力和分析問題,解決問題的能力,達(dá)到了本次課程設(shè)計(jì)的目的。 此次任意波形發(fā)生器的設(shè)計(jì),給我留下深刻的印象。我會在以后的學(xué)習(xí)、生活中磨練自己,使自己能夠滿足社會的需求。同時,我非常感謝張老師的指導(dǎo),在她的細(xì)心講解下,我順利的完成的此次任意波形發(fā)生器的課程設(shè)計(jì)。 參考文獻(xiàn) [1] 江國強(qiáng) EDA技術(shù)與應(yīng)用 北京:電子工業(yè)出版社,2005 [2]孫加存 電子設(shè)計(jì)自動化 西安:西安電子科技大學(xué)出版社 2008 [3] 林明權(quán),等 VHDL數(shù)字控制系統(tǒng)設(shè)計(jì)范例 北京:電子工業(yè)出版社,2005 [4] 焦素敏 EDA應(yīng)用技術(shù) 北京:清華大學(xué)出版社,2005 [5] 王振紅 VHDL數(shù)字電路設(shè)計(jì)與應(yīng)用實(shí)踐教程 北京:機(jī)械工業(yè)出版社,2003

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!

五月丁香婷婷狠狠色,亚洲日韩欧美精品久久久不卡,欧美日韩国产黄片三级,手机在线观看成人国产亚洲