2019-2020年高三上學(xué)期數(shù)學(xué)一輪復(fù)習(xí)教案:第25講 空間中的平行關(guān)系.doc
《2019-2020年高三上學(xué)期數(shù)學(xué)一輪復(fù)習(xí)教案:第25講 空間中的平行關(guān)系.doc》由會(huì)員分享,可在線(xiàn)閱讀,更多相關(guān)《2019-2020年高三上學(xué)期數(shù)學(xué)一輪復(fù)習(xí)教案:第25講 空間中的平行關(guān)系.doc(13頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
2019-2020年高三上學(xué)期數(shù)學(xué)一輪復(fù)習(xí)教案:第25講 空間中的平行關(guān)系 課題 空間中的平行關(guān)系(共 3 課時(shí)) 修改與創(chuàng)新 教學(xué)目標(biāo) 1.平面的基本性質(zhì)與推論 借助長(zhǎng)方體模型,在直觀認(rèn)識(shí)和理解空間點(diǎn)、線(xiàn)、面的位置關(guān)系的基礎(chǔ)上,抽象出空間線(xiàn)、面位置關(guān)系的定義,并了解如下可以作為推理依據(jù)的公理和定理: ◆公理1:如果一條直線(xiàn)上的兩點(diǎn)在一個(gè)平面內(nèi),那么這條直線(xiàn)在此平面內(nèi); ◆公理2:過(guò)不在一條直線(xiàn)上的三點(diǎn),有且只有一個(gè)平面; ◆公理3:如果兩個(gè)不重合的平面有一個(gè)公共點(diǎn),那么它們有且只有一條過(guò)該點(diǎn)的公共直線(xiàn); ◆公理4:平行于同一條直線(xiàn)的兩條直線(xiàn)平行; ◆定理:空間中如果兩個(gè)角的兩條邊分別對(duì)應(yīng)平行,那么這兩個(gè)角相等或互補(bǔ)。 2.空間中的平行關(guān)系 以立體幾何的上述定義、公理和定理為出發(fā)點(diǎn),通過(guò)直觀感知、操作確認(rèn)、思辨論證,認(rèn)識(shí)和理解空間中線(xiàn)面平行、垂直的有關(guān)性質(zhì)與判定。通過(guò)直觀感知、操作確認(rèn),歸納出以下判定定理: ◆平面外一條直線(xiàn)與此平面內(nèi)的一條直線(xiàn)平行,則該直線(xiàn)與此平面平行; ◆一個(gè)平面內(nèi)的兩條相交直線(xiàn)與另一個(gè)平面平行,則這兩個(gè)平面平行; 通過(guò)直觀感知、操作確認(rèn),歸納出以下性質(zhì)定理,并加以證明: ◆一條直線(xiàn)與一個(gè)平面平行,則過(guò)該直線(xiàn)的任一個(gè)平面與此平面的交線(xiàn)與該直線(xiàn)平行; ◆兩個(gè)平面平行,則任意一個(gè)平面與這兩個(gè)平面相交所得的交線(xiàn)相互平行; ◆垂直于同一個(gè)平面的兩條直線(xiàn)平行 能運(yùn)用已獲得的結(jié)論證明一些空間位置關(guān)系的簡(jiǎn)單命題。 命題走向 立體幾何在高考中占據(jù)重要的地位,通過(guò)近幾年的高考情況分析,考察的重點(diǎn)及難點(diǎn)穩(wěn)定,高考始終把直線(xiàn)與直線(xiàn)、直線(xiàn)與平面、平面與平面平行的性質(zhì)和判定作為考察重點(diǎn)。在難度上也始終以中等偏難為主,在新課標(biāo)教材中將立體幾何要求進(jìn)行了降低,重點(diǎn)在對(duì)圖形及幾何體的認(rèn)識(shí)上,實(shí)現(xiàn)平面到空間的轉(zhuǎn)化,示知識(shí)深化和拓展的重點(diǎn),因而在這部分知識(shí)點(diǎn)上命題,將是重中之重。 預(yù)測(cè)xx年高考將以多面體為載體直接考察線(xiàn)面位置關(guān)系: (1)考題將會(huì)出現(xiàn)一個(gè)選擇題、一個(gè)填空題和一個(gè)解答題; (2)在考題上的特點(diǎn)為:熱點(diǎn)問(wèn)題為平面的基本性質(zhì),考察線(xiàn)線(xiàn)、線(xiàn)面和面面關(guān)系的論證,此類(lèi)題目將以客觀題和解答題的第一步為主。 教學(xué)準(zhǔn)備 多媒體課件 教學(xué)過(guò)程 1.平面概述 (1)平面的兩個(gè)特征:①無(wú)限延展 ②平的(沒(méi)有厚度) (2)平面的畫(huà)法:通常畫(huà)平行四邊形來(lái)表示平面 (3)平面的表示:用一個(gè)小寫(xiě)的希臘字母、、等表示,如平面、平面;用表示平行四邊形的兩個(gè)相對(duì)頂點(diǎn)的字母表示,如平面AC。 2.三公理三推論: 公理1:若一條直線(xiàn)上有兩個(gè)點(diǎn)在一個(gè)平面內(nèi),則該直線(xiàn)上所有的點(diǎn)都在這個(gè)平面內(nèi): A,B,A,B 公理2:如果兩個(gè)平面有一個(gè)公共點(diǎn),那么它們還有其他公共點(diǎn),且所有這些公共點(diǎn)的集合是一條過(guò)這個(gè)公共點(diǎn)的直線(xiàn)。 公理3:經(jīng)過(guò)不在同一直線(xiàn)上的三點(diǎn),有且只有一個(gè)平面。 推論一:經(jīng)過(guò)一條直線(xiàn)和這條直線(xiàn)外的一點(diǎn),有且只有一個(gè)平面。 推論二:經(jīng)過(guò)兩條相交直線(xiàn),有且只有一個(gè)平面。 推論三:經(jīng)過(guò)兩條平行直線(xiàn),有且只有一個(gè)平面。 3.空間直線(xiàn): (1)空間兩條直線(xiàn)的位置關(guān)系: 相交直線(xiàn)——有且僅有一個(gè)公共點(diǎn); 平行直線(xiàn)——在同一平面內(nèi),沒(méi)有公共點(diǎn); 異面直線(xiàn)——不同在任何一個(gè)平面內(nèi),沒(méi)有公共點(diǎn)。相交直線(xiàn)和平行直線(xiàn)也稱(chēng)為共面直線(xiàn)。 異面直線(xiàn)的畫(huà)法常用的有下列三種: (2)平行直線(xiàn): 在平面幾何中,平行于同一條直線(xiàn)的兩條直線(xiàn)互相平行,這個(gè)結(jié)論在空間也是成立的。即公理4:平行于同一條直線(xiàn)的兩條直線(xiàn)互相平行。 (3)異面直線(xiàn)定理:連結(jié)平面內(nèi)一點(diǎn)與平面外一點(diǎn)的直線(xiàn),和這個(gè)平面內(nèi)不經(jīng)過(guò)此點(diǎn)的直線(xiàn)是異面直線(xiàn)。推理模式:與a是異面直線(xiàn)。 4.直線(xiàn)和平面的位置關(guān)系 (1)直線(xiàn)在平面內(nèi)(無(wú)數(shù)個(gè)公共點(diǎn)); (2)直線(xiàn)和平面相交(有且只有一個(gè)公共點(diǎn)); (3)直線(xiàn)和平面平行(沒(méi)有公共點(diǎn))——用兩分法進(jìn)行兩次分類(lèi)。 它們的圖形分別可表示為如下,符號(hào)分別可表示為,,。 線(xiàn)面平行的判定定理:如果不在一個(gè)平面內(nèi)的一條直線(xiàn)和平面內(nèi)的一條直線(xiàn)平行,那么這條直線(xiàn)和這個(gè)平面平行。推理模式:. 線(xiàn)面平行的性質(zhì)定理:如果一條直線(xiàn)和一個(gè)平面平行,經(jīng)過(guò)這條直線(xiàn)的平面和這個(gè)平面相交,那么這條直線(xiàn)和交線(xiàn)平行。推理模式:. 5.兩個(gè)平面的位置關(guān)系有兩種:兩平面相交(有一條公共直線(xiàn))、兩平面平行(沒(méi)有公共點(diǎn)) (1)兩個(gè)平面平行的判定定理:如果一個(gè)平面內(nèi)有兩條相交直線(xiàn)都平行于一個(gè)平面,那么這兩個(gè)平面平行。 定理的模式: 推論:如果一個(gè)平面內(nèi)有兩條相交直線(xiàn)分別平行于另一個(gè)平面內(nèi)的兩條相交直線(xiàn),那么這兩個(gè)平面互相平行。 推論模式: (2)兩個(gè)平面平行的性質(zhì)(1)如果兩個(gè)平面平行,那么其中一個(gè)平面內(nèi)的直線(xiàn)平行于另一個(gè)平面;(2)如果兩個(gè)平行平面同時(shí)和第三個(gè)平面相交,那么它們的交線(xiàn)平行。 典例解析 題型1:共線(xiàn)、共點(diǎn)和共面問(wèn)題 例1.(1)如圖所示,平面ABD平面BCD =直線(xiàn)BD ,M 、N 、P 、Q 分別為線(xiàn)段AB 、BC 、CD 、DA 上的點(diǎn),四邊形MNPQ 是以PN 、QM 為腰的梯形。 試證明三直線(xiàn)BD 、MQ 、NP共點(diǎn)。 證明:∵ 四邊形MNPQ 是梯形,且MQ 、NP 是腰, ∴直線(xiàn)MQ 、NP 必相交于某一點(diǎn)O 。 ∵ O 直線(xiàn)MQ ;直線(xiàn)MQ 平面ABD , ∴ O 平面ABD。 同理,O 平面BCD ,又兩平面ABD 、BCD 的交線(xiàn)為BD , 故由公理二知,O 直線(xiàn)BD ,從而三直線(xiàn)BD 、MQ 、NP 共點(diǎn)。 點(diǎn)評(píng):由已知條件,直線(xiàn)MQ 、NP 必相交于一點(diǎn)O ,因此,問(wèn)題轉(zhuǎn)化為求證點(diǎn)O 在直線(xiàn)BD 上,由公理二,就是要尋找兩個(gè)平面,使直線(xiàn)BD 是這兩個(gè)平面的交線(xiàn),同時(shí)點(diǎn)O 是這兩個(gè)平面的公共點(diǎn)即可.“三點(diǎn)共線(xiàn)”及“三線(xiàn)共點(diǎn)”的問(wèn)題都可以轉(zhuǎn)化為證明“點(diǎn)在直線(xiàn)上”的問(wèn)題。 α D C B A E F H G (2)如圖所示,在四邊形ABCD中,已知AB∥CD,直線(xiàn)AB,BC,AD,DC分別與平面α相交于點(diǎn)E,G,H,F(xiàn).求證:E,F(xiàn),G,H四點(diǎn)必定共線(xiàn)。 證明:∵AB∥CD, ∴AB,CD確定一個(gè)平面β. 又∵ABα=E,ABβ,∴E∈α,E∈β, 即E為平面α與β的一個(gè)公共點(diǎn)。 同理可證F,G,H均為平面α與β的公共點(diǎn). ∵兩個(gè)平面有公共點(diǎn),它們有且只有一條通過(guò)公共點(diǎn)的公共直線(xiàn), ∴E,F(xiàn),G,H四點(diǎn)必定共線(xiàn)。 點(diǎn)評(píng):在立體幾何的問(wèn)題中,證明若干點(diǎn)共線(xiàn)時(shí),常運(yùn)用公理2,即先證明這些點(diǎn)都是某二平面的公共點(diǎn),而后得出這些點(diǎn)都在二平面的交線(xiàn)上的結(jié)論。 例2.已知:a,b,c,d是不共點(diǎn)且兩兩相交的四條直線(xiàn),求證:a,b,c,d共面。 α b a d c G F E A a b c d α H K 圖1 圖2 證明:1o若當(dāng)四條直線(xiàn)中有三條相交于一點(diǎn),不妨設(shè)a,b,c相交于一點(diǎn)A, 但Ad,如圖1所示: ∴直線(xiàn)d和A確定一個(gè)平面α。 又設(shè)直線(xiàn)d與a,b,c分別相交于E,F(xiàn),G, 則A,E,F(xiàn),G∈α。 ∵A,E∈α, A,E∈a,∴aα。 同理可證bα,cα。 ∴a,b,c,d在同一平面α內(nèi)。 2o當(dāng)四條直線(xiàn)中任何三條都不共點(diǎn)時(shí), 如圖2所示: ∵這四條直線(xiàn)兩兩相交,則設(shè)相交直線(xiàn)a,b確定一個(gè)平面α。 設(shè)直線(xiàn)c與a,b分別交于點(diǎn)H,K,則H,K∈α。 又 H,K∈c,∴c,則cα。 同理可證dα。 ∴a,b,c,d四條直線(xiàn)在同一平面α內(nèi). 點(diǎn)評(píng):證明若干條線(xiàn)(或若干個(gè)點(diǎn))共面的一般步驟是:首先根據(jù)公理3或推論,由題給條件中的部分線(xiàn)(或點(diǎn))確定一個(gè)平面,然后再根據(jù)公理1證明其余的線(xiàn)(或點(diǎn))均在這個(gè)平面內(nèi)。本題最容易忽視“三線(xiàn)共點(diǎn)”這一種情況。因此,在分析題意時(shí),應(yīng)仔細(xì)推敲問(wèn)題中每一句話(huà)的含義。 題型2:異面直線(xiàn)的判定與應(yīng)用 例3.已知:如圖所示,a b =a ,b b ,a b =A ,c a ,c∥a 。求證直線(xiàn)b 、c 為異面直線(xiàn)。 證法一:假設(shè)b 、c 共面于g .由A a ,a ∥c 知,A c ,而a b =A,a b =a , ∴ A g ,A a。 又c a ,∴ g 、a 都經(jīng)過(guò)直線(xiàn)c 及其外的一點(diǎn)A, ∴ g 與a 重合,于是a g ,又b b。 又g 、b 都經(jīng)過(guò)兩相交直線(xiàn)a 、b ,從而g 、b 重合。 ∴ a 、b 、g 為同一平面,這與a b =a 矛盾。 ∴ b 、c 為異面直線(xiàn). 證法二:假設(shè)b 、c 共面,則b ,c 相交或平行。 (1)若b ∥c ,又a ∥c ,則由公理4知a ∥b ,這與a b =A 矛盾。 (2)若b c =P ,已知b b ,c a ,則P 是a 、b 的公共點(diǎn),由公理2,P a ,又b c =P ,即P c ,故a c =P ,這與a ∥c 矛盾。 綜合(1)、(2)可知,b 、c 為異面直線(xiàn)。 證法三:∵ a b =a ,a b =A ,∴ A a 。 ∵ a ∥c ,∴ A c , 在直線(xiàn)b 上任取一點(diǎn)P(P 異于A),則P a(否則b a ,又a a ,則a 、b 都經(jīng)過(guò)兩相交直線(xiàn)a、b ,則a 、b 重合,與a b =a 矛盾)。 又c a ,于是根據(jù)“過(guò)平面外一點(diǎn)與平面內(nèi)一點(diǎn)的直線(xiàn),和平面內(nèi)不經(jīng)過(guò)該點(diǎn)的直線(xiàn)是異面直線(xiàn)”知,b 、c 為異面直線(xiàn)。 點(diǎn)評(píng):證明兩直線(xiàn)為異面直線(xiàn)的思路主要有兩條:一是利用反證法;二是利用結(jié)論“過(guò)平面外一點(diǎn)與平面內(nèi)一點(diǎn)的直線(xiàn),和平面內(nèi)不經(jīng)過(guò)該點(diǎn)的直線(xiàn)是異面直線(xiàn).。異面直線(xiàn)又有兩條途徑:其一是直接假設(shè)b 、c 共面而產(chǎn)生矛盾;其二是假設(shè)b 、c 平行與相交;分別產(chǎn)生矛盾。判定直線(xiàn)異面,若為解答題,則用得最多的是證法一、二的思路;若為選擇或填空題,則往往都是用證法三的思路。用反證法證題,一般可歸納為四個(gè)步驟:(1)否定結(jié)論;(2)進(jìn)行推理;(3)導(dǎo)出矛盾;(4)肯定結(jié)論. 宜用反證法證明的命題往往是(1)基本定理或某一知識(shí)系統(tǒng)的初始階段的命題(如立體幾何中的線(xiàn)面、面面平行的判定定量的證明等);(2)肯定或否定型的命題(如結(jié)論中出現(xiàn)“必有”、 “必不存在”等一類(lèi)命題);(3)唯一型的命題(如“圖形唯一”、“方程解唯一”等一類(lèi)命題);(4)正面情況較為繁多,而結(jié)論的反面卻只有一兩種情況的一類(lèi)命題;(5)結(jié)論中出現(xiàn)“至多”、“不多于”等一類(lèi)命題。 例4.(1)已知異面直線(xiàn)a,b所成的角為70,則過(guò)空間一定點(diǎn)O,與兩條異面直線(xiàn)a,b都成60角的直線(xiàn)有( )條 A.1 B.2 C.3 D.4 (2)異面直線(xiàn)a,b所成的角為,空間中有一定點(diǎn)O,過(guò)點(diǎn)O有3條直線(xiàn)與a,b所成角都是60,則的取值可能是( ) A.30 B.50 C.60 D.90 解析:(1)過(guò)空間一點(diǎn)O分別作∥a,∥b。 將兩對(duì)對(duì)頂角的平分線(xiàn)繞O點(diǎn)分別在豎直平面內(nèi)轉(zhuǎn)動(dòng),總能得到與 都成60角的直線(xiàn)。故過(guò)點(diǎn) O與a,b都成60角的直線(xiàn)有4條,從而選D。 (2)過(guò)點(diǎn)O分別作∥a、∥b,則過(guò)點(diǎn)O有三條直線(xiàn)與a,b所成角都為60,等價(jià)于過(guò)點(diǎn)O有三條直線(xiàn)與所成角都為60,其中一條正是角的平分線(xiàn)。從而可得選項(xiàng)為C。 點(diǎn)評(píng):該題以學(xué)生對(duì)異面直線(xiàn)所成的角會(huì)適當(dāng)轉(zhuǎn)化,較好的考察了空間想象能力。 題型3:線(xiàn)線(xiàn)平行的判定與性質(zhì) 例5.關(guān)于直線(xiàn)a、b、l及平面M、N,下列命題中正確的是( ) A.若a∥M,b∥M,則a∥b B.若a∥M,b⊥a,則b⊥M C.若aM,bM,且l⊥a,l⊥b,則l⊥M D.若a⊥M,a∥N,則M⊥N 解析:解析:A選項(xiàng)中,若a∥M,b∥M,則有a∥b或a與b相交或a與b異面。B選項(xiàng)中,b可能在M內(nèi),b可能與M平行,b可能與M相交.C選項(xiàng)中須增加a與b相交,則l⊥M。D選項(xiàng)證明如下:∵a∥N,過(guò)a作平面α與N交于c,則c∥a,∴c⊥M.故M⊥N。答案D。 點(diǎn)評(píng):本題考查直線(xiàn)與直線(xiàn)、直線(xiàn)與平面、平面與平面的基本性質(zhì)。 例6.兩個(gè)全等的正方形ABCD和ABEF所在平面相交于AB,M∈AC,N∈FB,且AM=FN,求證:MN∥平面BCE。 證法一:作MP⊥BC,NQ⊥BE,P、Q為垂足,則MP∥AB,NQ∥AB。 ∴MP∥NQ,又AM=NF,AC=BF, ∴MC=NB,∠MCP=∠NBQ=45 ∴Rt△MCP≌Rt△NBQ ∴MP=NQ,故四邊形MPQN為平行四邊形 ∴MN∥PQ ∵PQ平面BCE,MN在平面BCE外, ∴MN∥平面BCE。 證法二:如圖過(guò)M作MH⊥AB于H,則MH∥BC, ∴ 連結(jié)NH,由BF=AC,F(xiàn)N=AM,得 ∴ NH//AF//BE 由MH//BC, NH//BE得:平面MNH//平面BCE ∴MN∥平面BCE。 題型4:線(xiàn)面平行的判定與性質(zhì) 例7.如圖,在長(zhǎng)方體中,分別是的中點(diǎn),分別是的中點(diǎn),,求證:面。 證明:取的中點(diǎn),連結(jié); ∵分別為的中點(diǎn) ∵ ∴面,面 ∴面面 ∴面 點(diǎn)評(píng):主要考察長(zhǎng)方體的概念、直線(xiàn)和平面、平面和平面的關(guān)系等基礎(chǔ)知識(shí),主要考察線(xiàn)面平行的判定定理。 例8.如圖所示,已知正四棱柱ABCD—A1B1C1D1,點(diǎn)E在棱D1D上,截面EAC∥D1B,且面EAC與底面ABCD所成的角為45,AB=a. (Ⅰ)求截面EAC的面積; (Ⅱ)求異面直線(xiàn)A1B1與AC之間的距離; 圖 解:(Ⅰ)如圖所示,連結(jié)DB交AC于O,連結(jié)EO。 ∵底面ABCD是正方形, ∴DO⊥AC 又∵ED⊥底面AC, ∴EO⊥AC ∴∠EOD是面EAC與底面AC所成二面角的平面角, ∴∠EOD=45 DO=a,AC=a,EO=asec45=a, 故S△EAC=EOAC=a2. (Ⅱ)由題設(shè)ABCD—A1B1C1D1是正四棱柱,得A1A⊥底面AC,A1A⊥AC. 又A1A⊥A1B1, ∴A1A是異面直線(xiàn)A1B1與AC間的公垂線(xiàn). ∵D1B∥面EAC,且面D1BD與面EAC交線(xiàn)為EO, ∴D1B∥EO, 又O是DB的中點(diǎn) ∴E是D1D的中點(diǎn),D1B=2EO=2a. ∴D1D=a 異面直線(xiàn)A1B1與AC間的距離為a. 題型5:面面平行的判定與性質(zhì) 例9.如圖,正方體ABCD—A1B1C1D1 的棱長(zhǎng)為a。證明:平面ACD1 ∥平面A1C1B 。 證明:如圖,∵ A1BCD1 是矩形,A1B ∥D1C 。 又D1C 平面D1CA ,A1B 平面D1CA , ∴ A1B ∥平面D1CA。 同理A1C1 ∥平面D1CA ,又A1C1 A1B =A1 ,∴ 平面D1CA ∥平面BA1C1 . 點(diǎn)評(píng):證明面面平行,關(guān)鍵在于證明A1C1 與A1B 兩相交直線(xiàn)分別與平面ACD1 平行。 例10.P是△ABC所在平面外一點(diǎn),A′、B′、C′分別是△PBC、△PCA、△PAB的重心。 (1)求證:平面A′B′C′∥平面ABC; (2)S△A′B′C′∶S△ABC的值。 解析:(1)取AB、BC的中點(diǎn)M、N, 則 ∴A′C′∥MNA′C′∥平面ABC。 同理A′B′∥面ABC, ∴△A′B′C′∥面ABC. (2)A′C′=MN=AC=AC , 同理 ∴ 思維總結(jié) 在掌握直線(xiàn)與平面的位置關(guān)系(包括直線(xiàn)與直線(xiàn)、直線(xiàn)與平面、平面與平面間的位置關(guān)系)的基礎(chǔ)上,研究有關(guān)平行的判定依據(jù)(定義、公理和定理)、判定方法及有關(guān)性質(zhì)的應(yīng)用;在有關(guān)問(wèn)題的解決過(guò)程中,進(jìn)一步了解和掌握相關(guān)公理、定理的內(nèi)容和功能,并探索立體幾何中論證問(wèn)題的規(guī)律;在有關(guān)問(wèn)題的分析與解決的過(guò)程中提高邏輯思維能力、空間想象能力及化歸和轉(zhuǎn)化的數(shù)學(xué)思想的應(yīng)用. 1.用類(lèi)比的思想去認(rèn)識(shí)面的垂直與平行關(guān)系,注意垂直與平行間的聯(lián)系。 2.注意立體幾何問(wèn)題向平面幾何問(wèn)題的轉(zhuǎn)化,即立幾問(wèn)題平面化。 3.注意下面的轉(zhuǎn)化關(guān)系: 4.直線(xiàn)和平面相互平行 證明方法:證明直線(xiàn)和這個(gè)平面內(nèi)的一條直線(xiàn)相互平行;證明這條直線(xiàn)的方向量和這個(gè)平面內(nèi)的一個(gè)向量相互平行;證明這條直線(xiàn)的方向量和這個(gè)平面的法向量相互垂直。 5.證明兩平面平行的方法: (1)利用定義證明。利用反證法,假設(shè)兩平面不平行,則它們必相交,再導(dǎo)出矛盾。 (2)判定定理:一個(gè)平面內(nèi)有兩條相交直線(xiàn)都平行于另一個(gè)平面,則這兩個(gè)平面平行,這個(gè)定理可簡(jiǎn)記為線(xiàn)面平行則面面平行。用符號(hào)表示是:a∩b,a α,b α,a∥β,b∥β,則α∥β。 (3)垂直于同一直線(xiàn)的兩個(gè)平面平行。用符號(hào)表示是:a⊥α,a⊥β則α∥β。 (4)平行于同一個(gè)平面的兩個(gè)平面平行。 兩個(gè)平面平行的性質(zhì)有五條: (1)兩個(gè)平面平行,其中一個(gè)平面內(nèi)的任一直線(xiàn)必平行于另一個(gè)平面,這個(gè)定理可簡(jiǎn)記為:“面面平行,則線(xiàn)面平行”。用符號(hào)表示是:α∥β,a α,則a∥β。 (2)如果兩個(gè)平行平面同時(shí)與第三個(gè)平面相交,那么它們的交線(xiàn)平行,這個(gè)定理可簡(jiǎn)記為:“面面平行,則線(xiàn)線(xiàn)平行”。用符號(hào)表示是:α∥β,α∩γ=a,β∩γ=b,則a∥b。 (3)一條直線(xiàn)垂直于兩平行平面中的一個(gè)平面,它也垂直于另一個(gè)平面。這個(gè)定理可用于證線(xiàn)面垂直。用符號(hào)表示是:α∥β,a⊥α,則a⊥β。 (4)夾在兩個(gè)平行平面間的平行線(xiàn)段相等。 (5)過(guò)平面外一點(diǎn)只有一個(gè)平面與已知平面平行。 板書(shū)設(shè)計(jì) 空間中的平行關(guān)系 1.三公理三推論: 公理1、公理2、公理3 推論一 推論二 推論三 2.空間直線(xiàn): 空間兩條直線(xiàn)的位置關(guān)系: 相交直線(xiàn)、平行直線(xiàn)、異面直線(xiàn) 3.直線(xiàn)和平面的位置關(guān)系 (1)直線(xiàn)在平面內(nèi)(無(wú)數(shù)個(gè)公共點(diǎn)); (2)直線(xiàn)和平面相交(有且只有一個(gè)公共點(diǎn)); (3)直線(xiàn)和平面平行(沒(méi)有公共點(diǎn))——用兩分法進(jìn)行兩次分類(lèi)。 線(xiàn)面平行的判定定理: . 線(xiàn)面平行的性質(zhì)定理: . 4. (1)兩個(gè)平面平行的判定定理 (2)兩個(gè)平面平行的性質(zhì) 教學(xué)反思- 1.請(qǐng)仔細(xì)閱讀文檔,確保文檔完整性,對(duì)于不預(yù)覽、不比對(duì)內(nèi)容而直接下載帶來(lái)的問(wèn)題本站不予受理。
- 2.下載的文檔,不會(huì)出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請(qǐng)點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁(yè)顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開(kāi)word文檔。
- 特殊限制:
部分文檔作品中含有的國(guó)旗、國(guó)徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對(duì)作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 2019-2020年高三上學(xué)期數(shù)學(xué)一輪復(fù)習(xí)教案:第25講 空間中的平行關(guān)系 2019 2020 年高 上學(xué) 期數(shù) 一輪 復(fù)習(xí) 教案 25 空間 中的 平行 關(guān)系
鏈接地址:http://m.jqnhouse.com/p-6177969.html