《新編高三數(shù)學 第32練 平面向量的線性運算及平面向量基本定理練習》由會員分享,可在線閱讀,更多相關《新編高三數(shù)學 第32練 平面向量的線性運算及平面向量基本定理練習(8頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、
第32練 平面向量的線性運算及平面向量基本定理
訓練目標
(1)平面向量的概念;(2)平面向量的線性運算;(3)平面向量基本定理.
訓練題型
(1)平面向量的線性運算;(2)平面向量的坐標運算;(3)向量共線定理的應用.
解題策略
(1)向量的加、減法運算要掌握兩個法則:平行四邊形法則和三角形法則,還要和式子:+=,-=聯(lián)系起來;(2)平面幾何問題若有明顯的建系條件,要用坐標運算;(3)利用向量共線可以列方程(組)求點或向量坐標或求參數(shù)的值.
一、選擇題
1.(20xx·佛山期中)已知點M(3,-2),N(-5,-1),且=,則點P是( )
A.(-8,1
2、) B.
C. D.(8,1)
2.(20xx·深圳調研)設a、b都是非零向量,下列四個條件中,使=成立的充要條件是( )
A.a(chǎn)=-b B.a(chǎn)∥b且方向相同
C.a(chǎn)=2b D.a(chǎn)∥b且|a|=|b|
3.(20xx·山西大學附中期中)已知向量a=(1,2),b=(-3,2),若(ka+b)∥(a-3b),則實數(shù)k的值為( )
A.- B.
C.-3 D.3
4.(20xx·哈爾濱三模)已知O為正三角形ABC內(nèi)一點,且滿足+λ+(1+λ)=0,若△OAB的面積與△OAC的面積比值為3,則λ的值為( )
A. B.1
C.2 D.3
5.如圖,在△AB
3、C中,=,=,若=λ+μ,則的值為( )
A.-3 B.3
C.2 D.-2
6.(20xx·遼源聯(lián)考)如圖所示,在四邊形ABCD中,AB=BC=CD=1,且∠B=90°,∠BCD=135°,記向量=a,=b,則等于( )
A.a-b B.-a+b
C.-a+b D.a+b
7.(20xx·河北衡水中學調研)已知O是平面內(nèi)一定點,A、B、C是平面上不共線的三個點,動點P滿足=+λ(λ∈[0,+∞)),則點P的軌跡一定通過△ABC的( )
A.外心 B.內(nèi)心
C.重心 D.垂心
8.(20xx·南安期中)如圖,在△ABC中,點D在線段BC上,且滿足BD
4、=DC,過點D的直線分別交直線AB,AC于不同的兩點M,N,若=m,=n,則( )
A.m+n是定值,定值為2
B.2m+n是定值,定值為3
C.+是定值,定值為2
D.+是定值,定值為3
二、填空題
9.P={a|a=(-1,1)+m(1,2),m∈R},Q={b|b=(1,-2)+n(2,3),n∈R}是兩個向量集合,則P∩Q=______________.
10.已知向量=(1,-3),=(2,-1),=(k+1,k-2),若A,B,C三點不能構成三角形,則實數(shù)k應滿足的條件是__________.
11.(20xx·廈門適應性考試)如圖,在△ABC中,·=0,=3
5、,過點D的直線分別交直線AB,AC于點M,N.若=λ,=μ(λ>0,μ>0),則λ+2μ的最小值是________.
12.(20xx·沈陽期中)在直角梯形ABCD中,AB⊥AD,DC∥AB,AD=DC=1,AB=2,E、F分別為AB、BC的中點,點P在以A為圓心,AD為半徑的圓弧上變動(如圖所示).若=λ+μ,其中λ,μ∈R,則2λ-μ的取值范圍是______________.
答案精析
1.B [設P(x,y),點M(3,-2),N(-5,-1),且=,
可得x-3=(-5-3),解得x=-1;
y+2=(-1+2),解得y=-.∴P.故選B.]
2.B [非
6、零向量a、b使=成立?a=b?a與b共線且方向相同,故選B.]
3.A [由a=(1,2),b=(-3,2),得ka+b=k(1,2)+(-3,2)=(k-3,2k+2),a-3b=(1,2)-3(-3,2)=(10,-4),則由(ka+b)∥(a-3b),得(k-3)×(-4)-10×(2k+2)=0,所以k=-.
故選A.]
4.A [設AC、BC邊的中點為E、F,則由+λ+(1+λ)=0,得+λ=0,
∴點O在中位線EF上.
∵△OAB的面積與△OAC的面積比值為3,∴點O為EF上靠近E的三等分點,∴λ=.]
5.B [∵=+,=
=(-)=-
=×-=-,
∴=+-=
7、+.
又=λ+μ,∴λ=,μ=,∴=×=3.
故選B.]
6.B [作DE⊥AB于E,CF⊥DE于F,
由題意,得∠ACD=90°,CF=BE=FD=,
∵=-=b-a,
∴=+=a+
=a+(b-a)
=-a+b,故選B.]
7.B [為上的單位向量,為上的單位向量,則+的方向為∠BAC的角平分線的方向.又λ∈[0,+∞),∴λ的方向與+的方向相同,而=+λ,∴點P在上移動.∴點P的軌跡一定通過△ABC的內(nèi)心,故選B.]
8.D [方法一 過點C作CE平行于MN交AB于點E.
由=n可得=,
∴==,
由BD=DC可得=,
∴==,
∵=m,∴m=,
8、整理可得+=3.
方法二 ∵M,D,N三點共線,
∴=λ+(1-λ).
又=m,=n,
∴=λm+(1-λ)n.①
又=,
∴-=-,
∴=+.②
由①②知λm=,(1-λ)n=.
∴+=3,故選D.]
9.{(-13,-23)}
解析 P中,a=(-1+m,1+2m),
Q中,b=(1+2n,-2+3n).
則解得
此時a=b=(-13,-23).
10.k=1
解析 若點A,B,C不能構成三角形,則向量,共線,因為=-=(2,-1)-(1,-3)=(1,2),=-=(k+1,k-2)-(1,-3)=(k,k+1),所以1×(k+1)-2k=0,解得k=1.
9、
11.
解析?。剑剑?-)=+.
設=x+y(x+y=1),
則=xλ+yμ,
則即
故λ+2μ==≥=.
當且僅當x=y(tǒng)=時,等號成立.
12.[-1,1]
解析 建立如圖所示的直角坐標系,設∠PAE=α,則
A(0,0),E(1,0),D(0,1),F(xiàn)(1.5,0.5),P(cosα,sin α)(0°≤α≤90°).
∵=λ+μ,
∴(cosα,sin α)=λ(-1,1)+μ(1.5,0.5),
∴cosα=-λ+1.5μ,sin α=λ+0.5μ,
∴λ=(3sin α-cosα),μ=(cosα+sin α),
∴2λ-μ=sin α-cosα=sin(α-45°).
∵0°≤α≤90°,∴-45°≤α-45°≤45°,
∴-≤sin(α-45°)≤,
∴-1≤sin(α-45°)≤1.
∴2λ-μ的取值范圍是[-1,1].