新教材2021-2022學(xué)年人教A版選擇性必修第三冊(cè) - 超幾何分布 學(xué)案.docx
《新教材2021-2022學(xué)年人教A版選擇性必修第三冊(cè) - 超幾何分布 學(xué)案.docx》由會(huì)員分享,可在線閱讀,更多相關(guān)《新教材2021-2022學(xué)年人教A版選擇性必修第三冊(cè) - 超幾何分布 學(xué)案.docx(8頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、7.4.2超幾何分布 新課程標(biāo)準(zhǔn)解讀 核心素養(yǎng) 通過(guò)具體實(shí)例,了解超幾何分布及其均值,并能解決簡(jiǎn)單的實(shí)際問(wèn)題 數(shù)學(xué)抽象、數(shù)學(xué)建模、數(shù)據(jù)分析 滋么*?密畿滿知識(shí)梳理<工^虹情境導(dǎo)入 某學(xué)校實(shí)行自主招生,參加自主招生的學(xué)生從8個(gè)試題中隨機(jī)挑選4個(gè)進(jìn)行作答,至少答對(duì)3個(gè)才能通過(guò)初試,已知在這8個(gè)試題中甲能答對(duì)6個(gè). [問(wèn)題]如何求出甲通過(guò)自主招生初試的概率?若記甲答對(duì)試題的個(gè)數(shù)為X,那么如何構(gòu)建適當(dāng)?shù)母怕誓P涂坍?huà)其分布? 迢新知初探 知識(shí)點(diǎn)超幾何分布 1. 超幾何分布的概念 一般地,假設(shè)一批產(chǎn)品共有N件,其中有M件次品,從N件產(chǎn)品中隨機(jī)抽取〃件(不放回),用X表示抽取的〃件產(chǎn)品
2、中的次品數(shù),則X的分布列為P(X=A)=箜耕,k=m,m+1,〃?+2,…,廠.其中〃,N,M《N*,MWN,nWN,,〃=max{0,〃—N+A/},廠=min{〃,M},如果隨機(jī)變量X的分布列具有上式的形式,那么稱隨機(jī)變量X服從超幾何分布. 2. 超幾何分布的均值 設(shè)隨機(jī)變量X服從超幾何分布,則X可以解釋為從包含M件次品的N件產(chǎn)品中,不放回地隨機(jī)抽取〃件產(chǎn)品中的次品數(shù).令p*則〃是N件產(chǎn)品的次品率,而三是抽取的〃件產(chǎn)品的次品率,則Em=nj). ??>點(diǎn)一點(diǎn)?超幾何分布與二項(xiàng)分布的區(qū)別與聯(lián)系 超幾何分布和二項(xiàng)分布都可以描述隨機(jī)抽取的〃件產(chǎn)品中次品數(shù)的分布規(guī)律,并且二者的均值相同.對(duì)
3、于不放回抽樣,當(dāng)〃遠(yuǎn)遠(yuǎn)小于N時(shí),每抽取一次后,對(duì)N的影響很小,此時(shí),超幾何分布可以用二項(xiàng)分布近似模擬. 。做一做 1. 在10個(gè)村莊中,有4個(gè)村莊交通不方便,若用隨機(jī)變量X表示任選6個(gè)村莊中交 通不方便的村莊的個(gè)數(shù),則X服從超幾何分布,其參數(shù)為()A. N=10,M=4,n=6 B. N=10,M=4,n=6 B. N=10,M=6,〃=4 C. N=14,M=10,〃=4 CI. N=14,M=10,〃=4 D. N=14,M=4,〃=1() 解析:選A根據(jù)超幾何分布概率模型知N=10,M=4,〃=6. 率為() CjoCfoa?E c%)c3()
4、2. 設(shè)袋中有80個(gè)紅球,20個(gè)白球,若從袋中任取10個(gè)球,則其中恰有6個(gè)紅球的概C$()C?oC^oCSo "Cl8ocCCD,^I8o 解析:選D若隨機(jī)變量X表示任取10個(gè)球中紅球的個(gè)數(shù),則X服從參數(shù)為N=100,凹=8(),〃=1()的超幾何分布.取到10個(gè)球中恰有6個(gè)紅球,即X=6,P(X=6)=早斜注意袋中球的個(gè)數(shù)為80+20=100). 3. 某10人組成興趣小組,其中有5名團(tuán)員,從這10人中任選4人參加某種活動(dòng),用X表示4人中的團(tuán)員人數(shù),則P(X=3)= 解析:P(X=3)=;j=和??劾緣Ml國(guó)骸骨典物精析 超幾何分布的概率 超幾何分布的概率 [例1](鏈
5、接教科書(shū)第78頁(yè)例4)10件產(chǎn)品中有2件次品,任取2件進(jìn)行檢驗(yàn),求下列事件的概率: (1)至少彳J1件次品; (2)至多有1件次品. [解|(1)“至少有I件次品"的對(duì)立事件是“2件都是正品”.“2件都是正品”的概率噫峨17 所以“至少有1件次品”的概率為1一蓋=蕓. ⑵“至多有1件次品”的對(duì)立事件為“2件都是次品”,“2件都是次品"的概率為余 45'|44 所以"至多有1件次品”的概率為1一示=* 有關(guān)超兒何分布問(wèn)題,可直接套用公式求解,對(duì)于含“至多”“至少”等求概率問(wèn)題,可先求其對(duì)立事件概率,再求原事件概率. [跟蹤訓(xùn)練] 從放有10個(gè)紅球與15個(gè)白球的暗箱中,隨意摸出
6、5個(gè)球,規(guī)定取到一個(gè)白球得1分,一個(gè)紅球得2分,求某人摸出5個(gè)球,恰好得7分的概率. 解:設(shè)摸出的紅球個(gè)數(shù)為X,則X服從超幾何分布,其中N=25,M=10,〃=5,由于摸出5個(gè)球,得7分,僅有摸出兩個(gè)紅球的可能,那么恰好得7分的概率為P(X=2)=*|^*0.385,即恰好得7分的概率約為0.385. 超幾何分布的分布列 [例2](鏈接教科書(shū)笫79頁(yè)例6)一個(gè)袋中裝有6個(gè)形狀、大小完全相同的小球,其中紅球有3個(gè),編號(hào)為1,2,3;黑球有2個(gè),編號(hào)為1,2;白球有1個(gè),編號(hào)為I.現(xiàn)從袋中一次隨機(jī)抽取3個(gè)球. (1) 求取出的3個(gè)球的顏色都不相同的概率; (2) 記取得I號(hào)球的個(gè)數(shù)為隨機(jī)
7、變量X,求隨機(jī)變量X的分布列. [解I(1)從袋中一次隨機(jī)抽取3個(gè)球,所有取法的總數(shù)〃=C/=20,取出的3個(gè)球的顏色都不相同包含的樣本點(diǎn)的個(gè)數(shù)為ac%ci=6,所以取出的3個(gè)球的顏色都不相同的概.率為n=A=A120_1。. (2)由題意知X=0,1,2,3. 八C9IC4C49 P(X=0)=&=赤,戶0=1)=有=赤,CiCl9C41 昭=2)=有=赤,"=3)=&=赤? 所以X的分布列為 X () 1 2 3 P 1 9 9 1 20 20 20 20 [母題 采究] 1. (變?cè)O(shè)問(wèn))在本例條件下,若記取到白球的個(gè)數(shù)為隨機(jī)變量,”求隨機(jī)變量
8、〃的分布列.解:由題意可知〃=0,1,服從兩點(diǎn)分布.又p(〃=i)=金=土所以〃的分布列為 7 0 1 1 1 P 2 2 2. (變條件)將本例的條件“一次隨機(jī)抽取3個(gè)球”改為“有放I可地抽取3次,每次抽取1個(gè)球”,其他條件不變,結(jié)果又如何? 解:⑴取出3個(gè)球顏色都不相同的概率D_C|XCjXC|XAj1 P— D_C|XCjXC|XAj1 P— 63 (2)由題意知X=O,1,2,3. (2)由題意知X=O,1,2,3. 331C4X3X3X3 P(X=O)=”=§,P(X=1)=— 3-8 P(X=2)=63 P(X=2)=63
9、 (3X3X3X33 所以X的分布列為 X 0 1 2 3 p 8 3 8 3 8 8 求超幾何分布的分布列的步驟 (1) 驗(yàn)證隨機(jī)變量服從超幾何分布,并確定參數(shù)N,材,〃的值; (2) 根據(jù)超幾何分布的概率計(jì)算公式計(jì)算出隨機(jī)變量取每一個(gè)值時(shí)的概率; (3) 用表格的形式列出分布列. [跟蹤訓(xùn)練] 從5名女生和2名男生中任選3人參加英語(yǔ)演講比賽,設(shè)隨機(jī)變量j表示所選3人中男生的人數(shù). (1) 求4的分布列; (2) 求j的均值和方差; (3) 求“所選3人中男生人數(shù)揀1”的概率. 解:⑴由題知j的可耗取值為0,1,2,P(e=0)=^p=|
10、,p(e=i)=華卜=:,P(S=2)a?c&1~~cT=i^ 所以{的分布列為(2-% (2-% 20 49- 246⑶由⑴可得pcw1)=p($=())+pq=I)=5+7=7. 超幾何分布的綜合應(yīng)用 [例3]某海域共有A,B型兩種搜救船10艘,其中A型船7艘,B型船3艘. (1)現(xiàn)從中任選2艘執(zhí)行搜救任務(wù),求恰好有一艘B型船的概率; (2)假設(shè)每艘A型船的搜救能力指數(shù)為5,每艘B型船的搜救能力指數(shù)為10.現(xiàn)從這10艘船中隨機(jī)抽出4艘執(zhí)行搜救任務(wù),設(shè)搜救能力指數(shù)為&求,的分布列. ClCl7 I解](1)設(shè)“恰好有I般B型船”為事件A,則P(A)=W「=E,即
11、恰好有I戡B型船的概率為 (2)法一:依題意,4的可能取值為20,25,30,35. 且p(j=20)=導(dǎo)=£彩=25)=寄=孑, E°)=箸葦心滬箸喘 所以S的分布列為 20 25 30 35 1 1 3 1 P 6 2 10 30 法二:設(shè)隨機(jī)抽取的4般船中含有B型船的艘數(shù)為〃,依題意〃服從超幾何分布,且N=10,M=4,h=3. 而搜救能力指數(shù)£=10〃+5(4一砂=20+5們其中“=0,1,2,3,所以£=20,25,30,35. C9C3I 且P(4=2())=P(〃=0)=-^-=q P({=25)=晌=1)=箸=;, P({=
12、30)=P(,7=2)=甕=尋, P(4=35)=P(,7=3)=費(fèi)=令? 故4的分布列為 4 20 25 30 35 1 1 3 1 P 6 2 To 30 求超幾何分布的均值的步驟 (1) 先判斷隨機(jī)變量服從超幾何分布,找出參數(shù)N,M,〃的取值; (2) 利用公式P(X=k)=C修;%,*=0,1,2,…,m,〃?=min{M,〃)求出分布列; (3) 利用均值定義求出均值EW. [跟蹤訓(xùn)練] 某批產(chǎn)品共1()件,己知從該批產(chǎn)品中任取1件,則取到的是次品的概率為〃=0.2.若從該批產(chǎn)品中任意抽取3件. (1) 求取出的3件產(chǎn)品中恰好有一件次
13、品的概率; (2) 求取出的3件產(chǎn)品中次品的件數(shù)X的概率分布列與期望. X 解:設(shè)該批產(chǎn)品中次品有工件,由已知而=0.2, 所以x=2. (1) 設(shè)取出的3件產(chǎn)品中次品的件數(shù)為X,則X服從超幾何分布,且N=10,M=2,n=3.取出的3件產(chǎn)品中恰好有一件次品的概率為P(X=I)=§¥=£. ca7 (2) 因?yàn)閄的可能取值為0,1,2,且P(X=°)=&=育, P(X=1)=£,P(X=2)=笥=吉. 所以X的概率分布列為 X 0 1 2 P 7 15 7 15 1 75 77I3 則£(X)=0X-+lX-+2X-=- ?劾么—前酸滿思維升華〈工
14、SSN隨機(jī)變量函數(shù)的數(shù)學(xué)期望和方差 1. 某商場(chǎng)做促銷活動(dòng),凡是一家三口…起來(lái)商場(chǎng)購(gòu)物的家庭,均可參加返現(xiàn)活動(dòng),活動(dòng)規(guī)則如下:商家在箱中裝入2()個(gè)大小相同的球,其中6個(gè)是紅球,其余都是黑球;每個(gè)家庭只能參加一次活動(dòng),參加活動(dòng)的三口人,每人從中任取一球,只能取一次,且每人取球后均放回;若取到黑球則獲得4元返現(xiàn)金,若取到紅球則獲得12元返現(xiàn)金.若某家庭參與了該活動(dòng),求該家庭獲得的返現(xiàn)金額的期望. 提示:設(shè)3個(gè)人中取到黑球的個(gè)數(shù)記為隨機(jī)變量X,則3個(gè)人中取到紅球的個(gè)數(shù)記為隨機(jī)變量3—X,記該家庭獲得的返現(xiàn)金額為隨機(jī)變量Y,則由題意知Y=4X+12(3—X)=3614 -8X,因?yàn)槊看稳〉煤谇?/p>
15、的概率為2q=0.7,所以X?8(3,0.7),所以E(K)=36-8E(X)=36一8X3X0.7=19.2. 2. 某籃球運(yùn)動(dòng)員在三分球大賽時(shí)的命中率為§假設(shè)三分球大賽中總計(jì)投出8球,投中一球得3分,投丟一球扣1分,求該運(yùn)動(dòng)員得分的期望與方差. 提示:設(shè)該運(yùn)動(dòng)員命中球數(shù)為X,根據(jù)題意,該運(yùn)動(dòng)員命中球數(shù)X?B(8,直), AE(X)=8x|=4,O(X)=8X?X(1-!)=2. 設(shè)該運(yùn)動(dòng)員的得分為隨機(jī)變量Y,則K的所有可能取值為一8,-4,0,4,8,12,16,20,24,且P(V=-8)=P(X=0),P(件一4)=P(X=1),P(Y=0)=P(X=2),P(V=4)=P(X
16、=3),P(Y=8)=P(X=4),P(件]2)=P(X=5),P(件16)=P(X=6),P(件20)=P(X=7),P(Y=24)=P(X=8), ..?隨機(jī)變量X,Y的關(guān)系為V=4X-8, ?.?E(V)=E(4X—8)=4E(X)—8=4X4—8=8, D(r)=D(4X-8)=16D(X)=16X2=32. [結(jié)論]求解隨機(jī)變量Y=aX^b的均值時(shí),可以先求出隨機(jī)變量X的均值頊X),然后利用公式E(aX+b)=aE(X)+b,求得隨機(jī)變量V的均值;也可以先求出Y=aX+b的分布列,然后利用均值的定義公式求出隨機(jī)變量丫的均值. 由以上兩題可以看出,要求期望的隨機(jī)變量K本身并不
17、服從超幾何分布或二項(xiàng)分布,但它和另一個(gè)服從超幾何分布或二項(xiàng)分布的隨機(jī)變量X可以建立一個(gè)一次函數(shù)關(guān)系,這時(shí)通常先根據(jù)超幾何分布或二項(xiàng)分布的期望公式求得X的期望E(X),再利用期望的性質(zhì)求得£(r);也可以直接對(duì)丫進(jìn)行分析,求得其分布列,然后利用期望的定義求解. [遷移應(yīng)用] 網(wǎng)約車的興起豐富了民眾出行的選擇,為民眾出行提供便利的同時(shí)也解決了很多勞動(dòng)力的就業(yè)問(wèn)題.梁某為網(wǎng)約車司機(jī),據(jù)梁某自己統(tǒng)計(jì)某一天出車一次的總路程數(shù)可能的取值是20,22,24,26,28,30,它們出現(xiàn)的概率依次是0.1,0.2,0.3,02,f,2,. (1) 求這一天中梁某一次行駛路程X的分布列,并求X的均值和方差;
18、 (2) 網(wǎng)約車計(jì)費(fèi)規(guī)則如下:起步價(jià)為5元,行駛路程不超過(guò)3km時(shí),收費(fèi)5元,若行駛路程超過(guò)3km,則每超出Ikm(不足1km也按1km計(jì)程)收費(fèi)3元.依據(jù)以上條件,計(jì)算梁某一天中出車一次收入的均值和方差. 解:⑴由概率分布的性質(zhì)知,0.1+0.2+0.3+0.1+,+2i=l,.?"=0.1. .?.X的分布列為?..£(X)=20X0.1+22X0.2+24X0.3+26X0.1+28X0.1+30X0.2=25. X 20 22 24 26 28 30 P 0.1 0.2 0.3 0.1 0.1 0.2 Z)(X)=52XO.H-32XO.2+12X
19、O.34-12XO.H-32XO.H-52XO.2=1O,6. (2)設(shè)梁某一天出車一次的收入為K元,則k=3(X-3)+5=3X-4(X>3,XEN), A£(r)=E(3X-4)=3E(X)-4=3X25-4=71,£>(r)=D(3X-4)=32D(X)=95.4. 隨堂檢測(cè)1. 1. (多選)下列隨機(jī)事件中的隨機(jī)變量X不服從超兒何分布的是() A. 將一枚硬幣連拋3次,正面向上的次數(shù)XB. 從7名男生與3名女生共10名學(xué)生干部中選出5名優(yōu)秀學(xué)生干部,選出女生的人數(shù)為X C. 某射手的命中率為0.8,現(xiàn)對(duì)目標(biāo)射擊I次,記命中目標(biāo)的次數(shù)為XD. 盒中有4個(gè)白球和3個(gè)黑球,每次從中摸出1球且不放回,X是首次摸出黑球時(shí)的總次數(shù) 解析:選ACD由超幾何分布的定義可知僅B是超幾何分布,故選A、C、D. 2.在100張獎(jiǎng)券中,有4張能中獎(jiǎng),從中任取2張,則2張都能中獎(jiǎng)的概率是()c?焉 D?4950解析:選C記X為2張中的中獎(jiǎng)數(shù),則P(X=2)=點(diǎn)=初§ 3.從4名男生和2名女生中任選3人參加數(shù)學(xué)競(jìng)賽,則所選3人中,女生不超過(guò)I人的概率為. 解析:設(shè)所選女生的人數(shù)為隨機(jī)變量X,X服從超幾何分布,則P(XW1)=P(X=O)4-5 =W- +-34-30 c-c=4-C『熟(%=答
- 溫馨提示:
1: 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 建筑施工重大危險(xiǎn)源安全管理制度
- 安全培訓(xùn)資料:典型建筑火災(zāi)的防治基本原則與救援技術(shù)
- 企業(yè)雙重預(yù)防體系應(yīng)知應(yīng)會(huì)知識(shí)問(wèn)答
- 8 各種煤礦安全考試試題
- 9 危險(xiǎn)化學(xué)品經(jīng)營(yíng)單位安全生產(chǎn)管理人員模擬考試題庫(kù)試卷附答案
- 加壓過(guò)濾機(jī)司機(jī)技術(shù)操作規(guī)程
- 樹(shù)脂砂混砂工藝知識(shí)總結(jié)
- XXXXX現(xiàn)場(chǎng)安全應(yīng)急處置預(yù)案
- 某公司消防安全檢查制度總結(jié)
- 1 煤礦安全檢查工(中級(jí))職業(yè)技能理論知識(shí)考核試題含答案
- 4.燃?xì)獍踩a(chǎn)企業(yè)主要負(fù)責(zé)人模擬考試題庫(kù)試卷含答案
- 工段(班組)級(jí)安全檢查表
- D 氯化工藝作業(yè)模擬考試題庫(kù)試卷含答案-4
- 建筑起重司索信號(hào)工安全操作要點(diǎn)
- 實(shí)驗(yàn)室計(jì)量常見(jiàn)的30個(gè)問(wèn)問(wèn)答題含解析