《(浙江專版)2018年高中數(shù)學 第一章 導數(shù)及其應用 1.4 生活中的優(yōu)化問題舉例學案 新人教A版選修2-2.doc》由會員分享,可在線閱讀,更多相關《(浙江專版)2018年高中數(shù)學 第一章 導數(shù)及其應用 1.4 生活中的優(yōu)化問題舉例學案 新人教A版選修2-2.doc(20頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1.4
幾何中的最值問題
[典例] 有一塊邊長為a的正方形鐵板,現(xiàn)從鐵板的四個角各截去一個相同的小正方形,做成一個長方體形的無蓋容器.為使其容積最大,截下的小正方形邊長應為多少?
[解] 設截下的小正方形邊長為x,容器容積為V(x),則做成的長方體形無蓋容器底面邊長為a-2x,高為x,
V(x)=(a-2x)2x,0
0;
當x10,f(x)在區(qū)間(64,640)內(nèi)為增函數(shù),
所以f(x)在x=64處取得最小值.
此時n=-1=-1=9.
故需新建9個橋墩才能使y最小.
費用、用料最省問題是日常生活中常見的問題之一,解決這類問題要明確自變量的意義以及最值問題所研究的對象.正確書寫函數(shù)表達式,準確求導,結合實際做答.
[活學活用]
某工廠要圍建一個面積為128 m2的矩形堆料場,一邊可以用原有的墻壁,其它三邊要砌新的墻壁,要使砌墻所用的材料最省,則堆料場的長、寬應分別是多少?
解:設場地寬為x m,則長為 m,
因此新墻總長度為y=2x+(x>0),
y′=2-,令y′=0,∵x>0,∴x=8.
因為當0<x<8時,y′<0;當x>8時,y′>0,
所以當x=8時,y取最小值,此時寬為8 m,長為16 m.
即當堆料場的長為16 m,寬為8 m時,可使砌墻所用材料最省.
利潤最大問題
[典例] 某商場銷售某種商品的經(jīng)驗表明,該商品每日的銷售量y(單位:千克)與銷售價格x(單位:元/千克)滿足關系式y(tǒng)=+10(x-6)2.其中3<x<6,a為常數(shù).已知銷售價格為5元/千克時,每日可售出該商品11千克.
(1)求a的值;
(2)若該商品的成本為3元/千克,試確定銷售價格x的值,使商場每日銷售該商品所獲得的利潤最大.
[解] (1)因為x=5時,y=11,
所以+10=11,a=2.
(2)由(1)可知,該商品每日的銷售量y=+10(x-6)2,
所以商場每日銷售該商品所獲得的利潤
f(x)=(x-3)=2+10(x-3)(x-6)2,3<x<6.
從而f′(x)=10[(x-6)2+2(x-3)(x-6)]
=30(x-4)(x-6).
于是,當x變化時,f′(x),f(x)的變化情況如下表:
x
(3,4)
4
(4,6)
f′(x)
+
0
-
f(x)
單調(diào)遞增↗
極大值42
單調(diào)遞減↘
由上表可得,x=4是函數(shù)f(x)在區(qū)間(3,6)內(nèi)的極大值點,也是最大值點.
所以當x=4時,函數(shù)f(x)取得最大值,且最大值等于42.
即當銷售價格為4元/千克時,商場每日銷售該商品所獲得的利潤最大.
1.經(jīng)濟生活中優(yōu)化問題的解法
經(jīng)濟生活中要分析生產(chǎn)的成本與利潤及利潤增減的快慢,以產(chǎn)量或單價為自變量很容易建立函數(shù)關系,從而可以利用導數(shù)來分析、研究、指導生產(chǎn)活動.
2.關于利潤問題常用的兩個等量關系
(1)利潤=收入-成本.
(2)利潤=每件產(chǎn)品的利潤銷售件數(shù).
[活學活用]
工廠生產(chǎn)某種產(chǎn)品,次品率p與日產(chǎn)量x(萬件)間的關系為p=(c為常數(shù),且0c時,p=,y=x3-x=0;
當0c時,日盈利額為0.
當00,∴y在區(qū)間(0,c]上單調(diào)遞增,∴y最大值=f(c)=.
②當3≤c<6時,在(0,3)上,y′>0,在(3,c)上,y′<0,∴y在(0,3)上單調(diào)遞增,在(3,c)上單調(diào)遞減.
∴y最大值=f(3)=.
綜上,若0400時,P′<0恒成立,易知當x=300時,總利潤最大.
4.設正三棱柱的體積為V,那么其表面積最小時,底面邊長為( )
A. B.2
C. D.V
解析:選C 設底面邊長為x,則高為h=,
∴S表=3x+2x2=+x2,
∴S表′=-+x,
令S表′=0,得x=.
經(jīng)檢驗知,當x=時,S表取得最小值.
5.內(nèi)接于半徑為R的球且體積最大的圓錐的高為( )
A.R B.2R
C.R D.R
解析:選C 設圓錐高為h,底面半徑為r,則R2=(h-R)2+r2,∴r2=2Rh-h(huán)2,∴V=πr2h=h(2Rh-h(huán)2)=πRh2-h(huán)3,V′=πRh-πh2.令V′=0得h=R. 當00;當0),
y′=-x2,由y′=0,得x=25,x∈(0,25)時,
y′>0,x∈(25,+∞)時,y′<0,所以x=25時,
y取最大值.
答案:25
9.為了在夏季降溫和冬季供暖時減少能源損耗,房屋的屋頂和外墻需要建造隔熱層.某幢建筑物要建造可使用20年的隔熱層,每厘米厚的隔熱層建造成本為6萬元.該建筑物每年的能源消耗費用C(單位:萬元)與隔熱層厚度x(單位:cm)滿足關系:C(x)=(0≤x≤10),若不建隔熱層,每年能源消耗費用為8萬元,設f(x)為隔熱層建造費用與20年的能源消耗費用之和.
(1)求k的值及f(x)的表達式;
(2)隔熱層修建多厚時,總費用f(x)達到最小,并求最小值.
解:(1)設隔熱層厚度為x cm,由題設,每年能源消耗費用為C(x)=,再由C(0)=8,得k=40,
因此C(x)=.
而建造費用為C1(x)=6x.
最后得隔熱層建造費用與20年的能源消耗費用之和為
f(x)=20C(x)+C1(x)=20+6x
=+6x(0≤x≤10).
(2)f′(x)=6-,
令f′(x)=0,即=6,
解得x=5,x=-(舍去).
當00,
故x=5是f(x)的最小值點,對應的最小值為
f(5)=65+=70.
當隔熱層修建5 cm厚時,總費用達到最小值70萬元.
10.某廠生產(chǎn)某種電子元件,如果生產(chǎn)出一件正品,可獲利200元,如果生產(chǎn)出一件次品,則損失100元.已知該廠制造電子元件過程中,次品率p與日產(chǎn)量x的函數(shù)關系是:p=(x∈N*).
(1)寫出該廠的日盈利額T(元)用日產(chǎn)量x(件)表示的函數(shù)關系式;
(2)為獲最大日盈利,該廠的日產(chǎn)量應定為多少件?
解:(1)由題意可知次品率p=日產(chǎn)次品數(shù)/日產(chǎn)量,每天生產(chǎn)x件,次品數(shù)為xp,正品數(shù)為x(1-p).
因為次品率p=,當每天生產(chǎn)x件時,
有x件次品,有x件正品.
所以T=200x-100x
=25(x∈N*).
(2)T′=-25,
由T′=0得x=16或x=-32(舍去).
當00,當R0;當20,
故當x∈(0,80)時,函數(shù)h(x)為減函數(shù),
當x∈(80,120)時,函數(shù)h(x)為增函數(shù),
∴當x=80時,h(x)取得最小值,此時a取最大值為
a==200.
故若油箱有22.5升油,則該型號汽車最多行駛200千米.
(時間: 120分鐘 滿分:150分)
一、選擇題(本大題共8小題,每小題5分,共40分.在每小題給出的四個選項中,只有一項是符合題目要求的)
1.以正弦曲線y=sin x上一點P為切點的切線為直線l,則直線l的傾斜角的范圍是( )
A.∪ B.[0,π)
C. D.∪
解析:選A y′=cos x,∵cos x∈[-1,1],∴切線的斜率范圍是[-1,1],∴傾斜角的范圍是∪.
2.函數(shù)f(x)的定義域為開區(qū)間(a,b),導函數(shù)f′(x)在(a,b)內(nèi)的圖象如圖所示,則函數(shù)f(x)在開區(qū)間(a,b)內(nèi)有極小值點( )
A.1個 B.2個
C.3個 D.4個
解析:選A 設極值點依次為x1,x2,x3且a<x1<x2<x3<b,則f(x)在(a,x1),(x2,x3)上遞增,在(x1,x2),(x3,b)上遞減,因此,x1,x3是極大值點,只有x2是極小值點.
3.函數(shù)f(x)=x2-ln x的單調(diào)遞減區(qū)間是( )
A.
B.
C. ,
D.,
解析:選A ∵f′(x)=2x-=,當0<x≤時,f′(x)≤0,故f(x)的單調(diào)遞減區(qū)間為.
4.函數(shù)f(x)=3x-4x3(x∈[0,1])的最大值是( )
A.1 B.
C.0 D.-1
解析:選A f′(x)=3-12x2,令f′(x)=0,
則x=-(舍去)或x=,f(0)=0,f(1)=-1,
f=-=1,∴f(x)在[0,1]上的最大值為1.
5.已知函數(shù)f(x)的導函數(shù)f′(x)=a(x-b)2+c的圖象如圖所示,則函數(shù)f(x)的圖象可能是( )
解析:選D 由導函數(shù)圖象可知,當x<0時,函數(shù)f(x)遞減,排除A、B;當00,函數(shù)f(x)遞增.因此,當x=0時,f(x)取得極小值,故選D.
6.定義域為R的函數(shù)f(x)滿足f(1)=1,且f(x)的導函數(shù)f′(x)>,則滿足2f(x)1} D.{x|x>1}
解析:選B 令g(x)=2f(x)-x-1,∵f′(x)>,
∴g′(x)=2f′(x)-1>0,∴g(x)為單調(diào)增函數(shù),
∵f(1)=1,∴g(1)=2f(1)-1-1=0,∴當x<1時,
g(x)<0,即2f(x)π-2>1>π-3>0,
∴f(π-2)>f(1)>f(π-3),即c0知,
f′(x)與1-x+ex-1同號.
令g(x)=1-x+ex-1,則g′(x)=-1+ex-1.
所以當x∈(-∞,1)時,g′(x)<0,
g(x)在區(qū)間(-∞,1)上單調(diào)遞減;
當x∈(1,+∞)時,g′(x)>0,
g(x)在區(qū)間(1,+∞)上單調(diào)遞增.
故g(1)=1是g(x)在區(qū)間(-∞,+∞)上的最小值,
從而g(x)>0,x∈(-∞,+∞).
綜上可知,f′(x)>0,x∈(-∞,+∞),
故f(x)的單調(diào)遞增區(qū)間為(-∞,+∞).
18.(本小題滿分15分)某個體戶計劃經(jīng)銷A,B兩種商品,據(jù)調(diào)查統(tǒng)計,當投資額為x(x≥0)萬元時,在經(jīng)銷A,B商品中所獲得的收益分別為f(x)萬元與g(x)萬元,其中f(x)=a(x-1)+2,g(x)=6ln(x+b)(a>0,b>0).已知投資額為零時收益為零.
(1)求a,b的值;
(2)如果該個體戶準備投入5萬元經(jīng)銷這兩種商品,請你幫他制定一個資金投入方案,使他能獲得最大利潤.
解:(1)由投資額為零時收益為零,
可知f(0)=-a+2=0,g(0)=6ln b=0,
解得a=2,b=1.
(2)由(1)可得f(x)=2x,g(x)=6ln(x+1).
設投入經(jīng)銷B商品的資金為x萬元(0<x≤5),
則投入經(jīng)銷A商品的資金為(5-x)萬元,
設所獲得的收益為S(x)萬元,
則S(x)=2(5-x)+6ln(x+1)
=6ln(x+1)-2x+10(0<x≤5).
S′(x)=-2,令S′(x)=0,得x=2.
當0<x<2時,S′(x)>0,函數(shù)S(x)單調(diào)遞增;
當2<x≤5時,S′(x)<0,函數(shù)S(x)單調(diào)遞減.
所以當x=2時,函數(shù)S(x)取得最大值,
S(x)max=S(2)=6ln 3+6≈12.6萬元.
所以,當投入經(jīng)銷A商品3萬元,B商品2萬元時,
他可獲得最大收益,收益的最大值約為12.6萬元.
19.(本小題滿分15分)已知函數(shù)f(x)=ax2+2ln(1-x)(a為常數(shù)).
(1)若f(x)在x=-1處有極值,求a的值并判斷x=-1是極大值點還是極小值點;
(2)若f(x)在[-3,-2]上是增函數(shù),求a的取值范圍.
解:(1)f′(x)=2ax-,x∈(-∞,1),
f′(-1)=-2a-1=0,
所以a=-.
f′(x)=-x-=.
∵x<1,∴1-x>0,x-2<0,
因此,當x<-1時f′(x)>0,
當-1
下載提示(請認真閱讀)
- 1.請仔細閱讀文檔,確保文檔完整性,對于不預覽、不比對內(nèi)容而直接下載帶來的問題本站不予受理。
- 2.下載的文檔,不會出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請點此認領!既往收益都歸您。
文檔包含非法信息?點此舉報后獲取現(xiàn)金獎勵!
下載文檔到電腦,查找使用更方便
9.9
積分
- 配套講稿:
如PPT文件的首頁顯示word圖標,表示該PPT已包含配套word講稿。雙擊word圖標可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設計者僅對作品中獨創(chuàng)性部分享有著作權。
- 關 鍵 詞:
-
浙江專版2018年高中數(shù)學
第一章
導數(shù)及其應用
1.4
生活中的優(yōu)化問題舉例學案
新人教A版選修2-2
浙江
專版
2018
年高
數(shù)學
導數(shù)
及其
應用
生活
中的
優(yōu)化
問題
舉例
新人
選修
- 溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
裝配圖網(wǎng)所有資源均是用戶自行上傳分享,僅供網(wǎng)友學習交流,未經(jīng)上傳用戶書面授權,請勿作他用。
鏈接地址:http://m.jqnhouse.com/p-6469021.html