《云南省昭通市實驗中學(xué)高二數(shù)學(xué) 等比數(shù)列前n項和 9課件新人教A必修5》由會員分享,可在線閱讀,更多相關(guān)《云南省昭通市實驗中學(xué)高二數(shù)學(xué) 等比數(shù)列前n項和 9課件新人教A必修5(14頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、等差數(shù)列等差數(shù)列 an等比數(shù)列等比數(shù)列 an定義定義an+1 - an = d ( 常數(shù)常數(shù) )an+1 an = q ( 不為零不為零的常數(shù)的常數(shù) )通項通項 an = a1 + ( n 1 ) d an - am = ( n m ) d an = a1 qn-1 an am = qn-m公式公式推導(dǎo)推導(dǎo) 方法方法歸納猜想驗證法歸納猜想驗證法首尾相咬累首尾相咬累加加法法歸納猜想驗證法歸納猜想驗證法首尾相咬累首尾相咬累乘乘法法性質(zhì)性質(zhì)若若 m+n=r+s , m、n、r、sN*則則 am + an = ar + as若若 m+n=r+s , m、n、r、sN*則則 am an = ar as前
2、前n項項和和Sn公式公式推導(dǎo)推導(dǎo) 方法方法( a1 + an )nSn =2 = na1 +n(n 1)2d化零為整法化零為整法問題問題:等比數(shù)列:等比數(shù)列an,如果已知,如果已知a1 , q , n 怎樣表示怎樣表示Sn?Sn = a1 + a2 + + an解解:= a1 + a1q + a1q2 + + a1 qn-1= a1 ( 1 + q + q2 + + qn-1 )嘗試嘗試:S1 = a1S2 = a1 + a1q = a1 ( 1 + q )S3 = a1 + a1q + a1q2 = a1 ( 1+ q + q2 ) 討論討論q1時時 a1( 1 q3 )1 - q= a1(
3、 1 q2 )1 - q= a1( 1 q1 )1 - q=猜想猜想: Sn a1( 1 qn )1 - q=驗證驗證:an = Sn - Sn-1 a1( 1 qn )1 - q=- a1( 1 q n-1 )1 - q= a1 qn-1 a1(q n-1 qn )1 - q=當(dāng)當(dāng)n2時時當(dāng)當(dāng)n=1時時a1 = S1 亦滿足上式亦滿足上式 an = a1 qn-1 Sn ( q1 ) a1( 1 qn )1 - q= a1( 1 qn )1 - q=Sn = a1 + a2 + + an= a1 + a1q + a1q2 + + a1 qn-1= a1 ( 1 + q + q2 + + qn
4、-1 )當(dāng)當(dāng) q1 時時 即即 1 + q + q2 + + qn-1 ()() 1 qn 1 - q=證明()式證明()式( 1 + q + q2 + + qn-1 ) ( 1 - q )= 1 + q + q2 + + qn-1 - ( q + q2 + + qn-1 + qn )= 1 - qn ()式成立()式成立相減相減( 1 q ) Sn = a1 - a1 qn= a1 ( 1 qn )當(dāng)當(dāng) 1 q 0 , 即即 q 1 時,時, Sn a1( 1 qn )1 - q=當(dāng)當(dāng) q = 1 時,時, Sn = n a1錯項相減法錯項相減法:Sn = a1 + a1q + a1q2 +
5、 + a1 qn-1q Sn = a1q + a1q2 + + a1 qn-1 + a1qn 等比數(shù)列等比數(shù)列a an n前前n n項和公式為項和公式為當(dāng)當(dāng)q1時時 Sn a1( 1 qn )1 - q=當(dāng)當(dāng)q1時時Sn = n a1=a1 - an q1 - q練習(xí):練習(xí):(1) 124 263 (2)124 (2)n-1 = (3)等比數(shù)列)等比數(shù)列 an 中,中,a1 = 8 , q = , an = , 則則Sn=1212(4)等比數(shù)列)等比數(shù)列 an 中,中,a1 = 2 ,S3=26 , 則則 q = 264-11 ( - 2 ) n3312- 4 或或 3例例1 : 求通項為求通
6、項為 an = 2n + 2n -1 的數(shù)列的前的數(shù)列的前n項和項和解解:設(shè)設(shè) bn = 2n , 且對應(yīng)的前且對應(yīng)的前n項和為項和為 Cn=2n-1 , 對應(yīng)的前對應(yīng)的前n項和為項和為S n S n則則 an = bn Cn ,Sn = +S n S nS n= 2 ( 1 2 n ) 1 2 = 2 ( 2n 1 )= n2Sn =S n S n+=2n+1 + n2 - 2 S n= 1 + ( 2n - 1 ) 2 n例例2:求和:求和 ( x + ) + ( x2 + ) + ( x3 + ) + +( x +( xn n + )+ )1y1y21y31yn(1) 當(dāng)當(dāng) x 0 ,
7、y 1 時時(2) 當(dāng)當(dāng) x 0 時時解解:當(dāng)當(dāng) x = 1 時時Sn = ( x + x2 + + x + xn n ) + ( + + + ) + ( + + + )1y1y21yn(1)Sn = 1y( 1 - )1yn1 - 1y= n + yn+1 - yn yn - 1當(dāng)當(dāng) x 1 時時Sn = x ( 1 - xn )1 - x 1y( 1 - )1yn1 - 1y+ x ( 1 - xn )1 - x yn+1 - yn yn - 1+= n +( 2 ) 只須注意再討論只須注意再討論y是否等于是否等于1的取值情況的取值情況例例3: 求數(shù)列:求數(shù)列:1 , 2x , 3x2 ,
8、 ,nxnxn-1 n-1 , , (x0) x0) 的的前前n項和項和解解:當(dāng)當(dāng) x = 1 時時 Sn = 1 + 2 + 3 + + n =n(n+1)2當(dāng)當(dāng) x 1 時時 Sn = 1 + 2 x+ 3x2 + + nxn-1 x Sn = x+ 2x2 + + (n-1)xn-1 + nxn錯項相減錯項相減( 1 x ) Sn = 1 + x + x2 + + xn-1 - nxn=1 - xn1 - x- nxn Sn =1 - xn(1 - x)2-nxn1 - x=( 1 x )21 ( 1 + n ) xn + xn+1綜上所述:綜上所述:當(dāng)當(dāng) x = 1 時時 Sn =n(
9、n+1)2當(dāng)當(dāng) x 1 時時 Sn =( 1 x )21 ( 1 + n ) xn + xn+1等差數(shù)列等差數(shù)列 an等比數(shù)列等比數(shù)列 an定義定義an+1 - an = d ( 常數(shù)常數(shù) )an+1 an = q ( 不為零不為零的常數(shù)的常數(shù) )通項通項 an = a1 + ( n 1 ) d an - am = ( n m ) d an = a1 qn-1 an am = qn-m公式公式推導(dǎo)推導(dǎo) 方法方法歸納猜想驗證法歸納猜想驗證法首尾相咬累首尾相咬累加加法法歸納猜想驗證法歸納猜想驗證法首尾相咬累首尾相咬累乘乘法法性質(zhì)性質(zhì)若若 m+n=r+s , m、n、r、sN*則則 am + an
10、= ar + as若若 m+n=r+s , m、n、r、sN*則則 am an = ar as前前n項項和和Sn公式公式推導(dǎo)推導(dǎo) 方法方法( a1 + an )nSn =2 = na1 +n(n 1)2d化零為整法化零為整法當(dāng)當(dāng)q1時時 Sn = n a1當(dāng)當(dāng)q1時時 Sn a1( 1 qn )1 - q=a1 - an q1 - q歸納猜想驗證法歸納猜想驗證法錯項相減法錯項相減法方法三方法三:Sn = a1 + a2 + + an= a1 + a1q + a1q2 + + a1 qn-1= a1 + q ( a1 + a1q + + a1 qn-2 )= a1 + q Sn-1= a1 + q ( Sn an ) ( 1 q ) Sn = a1 q an當(dāng)當(dāng)q1時時 Sn a1( 1 qn )1 - q=a1 - an q1 - q當(dāng)當(dāng)q1時時Sn = n a1方法四方法四: 21aa32aa1nnaqa23121nnaaaqaaa1nnnsaqsa當(dāng)當(dāng)q1時時 Sn a1( 1 qn )1 - q=a1 - an q1 - q當(dāng)當(dāng)q1時時Sn = n a1