2019年高考數(shù)學復習大二輪精準提分練習第二篇 第31練

上傳人:努力****83 文檔編號:70949828 上傳時間:2022-04-06 格式:DOCX 頁數(shù):11 大?。?57.85KB
收藏 版權申訴 舉報 下載
2019年高考數(shù)學復習大二輪精準提分練習第二篇 第31練_第1頁
第1頁 / 共11頁
2019年高考數(shù)學復習大二輪精準提分練習第二篇 第31練_第2頁
第2頁 / 共11頁
2019年高考數(shù)學復習大二輪精準提分練習第二篇 第31練_第3頁
第3頁 / 共11頁

下載文檔到電腦,查找使用更方便

20 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《2019年高考數(shù)學復習大二輪精準提分練習第二篇 第31練》由會員分享,可在線閱讀,更多相關《2019年高考數(shù)學復習大二輪精準提分練習第二篇 第31練(11頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、 第31練 坐標系與參數(shù)方程[選做大題保分練] [明晰考情]1.命題角度: 高考主要考查平面直角坐標系中的伸縮變換、直線和圓的極坐標方程;參數(shù)方程與普通方程的互化,常見曲線的參數(shù)方程及參數(shù)方程的簡單應用.以極坐標方程、參數(shù)方程與普通方程的互化為主要考查形式,同時考查直線與曲線位置關系等解析幾何知識.2.題目難度:中檔難度. 考點一 曲線的極坐標方程 方法技巧 (1)進行極坐標方程與直角坐標方程互化的關鍵是抓住互化公式:x=ρcos θ,y=ρsin θ,ρ2=x2+y2,tan θ=(x≠0),要注意ρ,θ的取值范圍及其影響,靈活運用代入法和平方法等技巧. (2)由極坐標方程求曲

2、線交點、距離等幾何問題時,如果不能直接用極坐標解決,可先轉(zhuǎn)化為直角坐標方程,然后求解. 1.已知圓的極坐標方程為ρ=4cos θ,圓心為C,點P的極坐標為,求CP的長. 解 由ρ=4cos θ,得ρ2=4ρcos θ,即x2+y2=4x, 即(x-2)2+y2=4,∴圓心C(2,0), 又由點P的極坐標為, 可得點P的直角坐標為(2,2), ∴|CP|==2. 2.在極坐標系中,曲線C1:ρ(cos θ+sin θ)=1與曲線C2:ρ=a(a>0)的一個交點在極軸上,求a的值. 解 ρ(cos θ+sin θ)=1, 即ρcos θ+ρsin θ=1對應的普通方程為x+y-1

3、=0, ρ=a(a>0)對應的普通方程為x2+y2=a2. 在x+y-1=0中,令y=0,得x=. 將代入x2+y2=a2,得a=. 3.在直角坐標系xOy中,直線C1:x=-2,圓C2:(x-1)2+(y-2)2=1,以坐標原點為極點,x軸的正半軸為極軸建立極坐標系. (1)求C1,C2的極坐標方程; (2)若直線C3的極坐標方程為θ=(ρ∈R),設C2與C3的交點為M,N,求△C2MN的面積. 解 (1)因為x=ρcos θ,y=ρsin θ, 所以C1的極坐標方程為ρcos θ=-2, C2的極坐標方程為ρ2-2ρcos θ-4ρsin θ+4=0. (2)將θ=代入

4、ρ2-2ρcos θ-4ρsin θ+4=0, 得ρ2-3ρ+4=0,解得ρ1=2,ρ2=. 故ρ1-ρ2=,即|MN|=. 由于C2的半徑為1,所以△C2MN為等腰直角三角形, 所以△C2MN的面積為. 4.已知在平面直角坐標系xOy中,圓M的參數(shù)方程為(θ為參數(shù)),以Ox軸為極軸, O為極點建立極坐標系,在該極坐標系下,圓N是以點為圓心,且過點的圓. (1)求圓M的普通方程及圓N的直角坐標方程; (2)求圓M上任一點P與圓N上任一點之間距離的最小值. 解 (1)將方程消去參數(shù)θ,可得2+2=4, 所以圓M的方程為2+2=4. 點和點的直角坐標分別為,, 所以圓N的圓心

5、為, 半徑為r==1, 故圓N的直角坐標方程為2+2=1. (2)由(1)得圓M,N的圓心距為MN==4, 所以圓M上任一點P與圓N上任一點之間距離的最小值為dmin=MN-3=4-3=1. 考點二 參數(shù)方程及其應用 要點重組 過定點P0(x0,y0),傾斜角為α的直線參數(shù)方程的標準形式為(t為參數(shù)),t的幾何意義是的數(shù)量,即|t|表示P0到P的距離,t有正負之分.使用該式時直線上任意兩點P1,P2對應的參數(shù)分別為t1,t2,則|P1P2|=|t1-t2|,P1P2的中點對應的參數(shù)為(t1+t2). 方法技巧 (1)參數(shù)方程化為普通方程:由參數(shù)方程化為普通方程就是要消去參數(shù),消參

6、數(shù)時常常采用代入消元法、加減消元法、乘除消元法、三角代換法,且消參數(shù)時要注意參數(shù)的取值范圍對x,y的限制. (2)在與直線、圓、橢圓有關的題目中,參數(shù)方程的使用會使問題的解決事半功倍,尤其是求取值范圍和最值問題,可將參數(shù)方程代入相關曲線的普通方程中,根據(jù)參數(shù)的取值條件求解. 5.(2018·全國Ⅱ)在直角坐標系xOy中,曲線C的參數(shù)方程為(θ為參數(shù)),直線l的參數(shù)方程為(t為參數(shù)). (1)求C和l的直角坐標方程; (2)若曲線C截直線l所得線段的中點坐標為(1,2),求l的斜率. 解 (1)曲線C的直角坐標方程為+=1. 當cos α≠0時,l的直角坐標方程為y=tan α·x+

7、2-tan α, 當cos α=0時,l的直角坐標方程為x=1. (2)將l的參數(shù)方程代入C的直角坐標方程,整理得關于t的方程(1+3cos2α)t2+4(2cos α+sin α)t-8=0.① 因為曲線C截直線l所得線段的中點(1,2)在C內(nèi), 所以①有兩個解,設為t1,t2,則t1+t2=0. 又由①得t1+t2=-,故2cos α+sin α=0,于是直線l的斜率k=tan α=-2. 6.在平面直角坐標系xOy中,曲線C的參數(shù)方程為(θ為參數(shù)),直線l的參數(shù)方程為(t為參數(shù)).以坐標原點O為極點,x軸的正半軸為極軸建立極坐標系. (1)寫出直線l的普通方程以及曲線C的極

8、坐標方程; (2)若直線l與曲線C的兩個交點分別為M,N,直線l與x軸的交點為P,求|PM|·|PN|的值. 解 (1)直線l的參數(shù)方程為(t為參數(shù)), 消去參數(shù)t,得x+y-1=0. 曲線C的參數(shù)方程為(θ為參數(shù)), 利用平方關系,得x2+(y-2)2=4,則x2+y2-4y=0. 令ρ2=x2+y2,y=ρsin θ, 代入得C的極坐標方程為ρ=4sin θ. (2)在直線x+y-1=0中,令y=0,得點P(1,0). 把直線l的參數(shù)方程代入圓C的方程得t2-3t+1=0, ∴t1+t2=3,t1t2=1. 由直線參數(shù)方程的幾何意義,得|PM|·|PN|=|t1t2|

9、=1. 7.已知橢圓C:+=1,直線l:(t為參數(shù)). (1)寫出橢圓C的參數(shù)方程及直線l的普通方程; (2)設A(1,0),若橢圓C上的點P滿足到點A的距離與其到直線l的距離相等,求點P的坐標. 解 (1)橢圓C的參數(shù)方程為(θ為參數(shù)), 直線l的普通方程為x-y+9=0. (2)設P(2cos θ,sin θ), 則|AP|==2-cos θ, 點P到直線l的距離 d==. 由|AP|=d,得3sin θ-4cos θ=5, 又sin2θ+cos2 θ=1, 得sin θ=,cos θ=-. 故P. 考點三 極坐標方程與參數(shù)方程的綜合應用 方法技巧 (1)解決

10、極坐標與參數(shù)方程的綜合問題的關鍵是掌握極坐標方程與直角坐標方程的互化,參數(shù)方程與普通方程的互化.涉及圓、圓錐曲線上的點的最值問題,往往通過參數(shù)方程引入三角函數(shù),利用三角函數(shù)的最值求解. (2)數(shù)形結(jié)合的應用,即充分利用參數(shù)方程中參數(shù)的幾何意義,或者利用ρ和θ的幾何意義,直接求解,能達到化繁為簡的解題目的. 8.(2017·全國Ⅰ)在直角坐標系xOy中,曲線C的參數(shù)方程為 (θ為參數(shù)),直線l的參數(shù)方程為(t為參數(shù)). (1)若a=-1,求C與l的交點坐標; (2)若C上的點到l的距離的最大值為,求a. 解 (1)曲線C的普通方程為+y2=1. 當a=-1時,直線l的普通方程為x+4

11、y-3=0. 由 解得或 從而C與l的交點坐標是(3,0),. (2)直線l的普通方程是x+4y-4-a=0, 故C上的點(3cos θ,sin θ)到l距離d=. 當a≥-4時,d的最大值為 . 由題設得=,所以a=8; 當a<-4時,d的最大值為. 由題設得=, 所以a=-16. 綜上,a=8或a=-16. 9.(2017·全國Ⅲ)在直角坐標系xOy中,直線l1的參數(shù)方程為(t為參數(shù)),直線l2的參數(shù)方程為(m為參數(shù)).設l1與l2的交點為P,當k變化時,P的軌跡為曲線C. (1)寫出C的普通方程; (2)以坐標原點為極點,x軸的正半軸為極軸建立極坐標系,設l3

12、:ρ(cos θ+sin θ)-=0,M為l3與C的交點,求M的極徑. 解 (1)消去參數(shù)t,得l1的普通方程l1:y=k(x-2); 消去參數(shù)m,得l2的普通方程l2:y=(x+2). 設P(x,y),由題設得 消去k,得x2-y2=4(y≠0), 所以C的普通方程為x2-y2=4(y≠0). (2)C的極坐標方程為ρ2(cos2θ-sin2θ)=4(0<θ<2π,θ≠π), 聯(lián)立得 cos θ-sin θ=2(cos θ+sin θ). 故tan θ=-,從而cos2θ=,sin2θ=. 代入ρ2(cos2θ-sin2θ)=4,得ρ2=5, 所以l3與C的交點M的極徑

13、為. 10.在直角坐標系xOy中,直線l的參數(shù)方程為(t為參數(shù)),在極坐標系(與直角坐標系xOy取相同的長度單位,且以原點O為極點,以x軸正半軸為極軸)中,圓C的方程為ρ=6sin θ. (1)求圓C的直角坐標方程; (2)設圓C與直線l交于點A,B.若點P的坐標為(1,2),求+的最小值. 解  (1)由ρ=6sin θ,得ρ2=6ρsin θ, 化為直角坐標方程為x2+y2=6y, 即x2+(y-3)2=9. (2)將l的參數(shù)方程代入圓C的直角坐標方程, 得t2+2(cos α-sin α)t-7=0, 由Δ=(2cos α-2sin α)2+4×7>0, 故可設t1,

14、t2是上述方程的兩根, 所以 又直線l過點, 故結(jié)合t的幾何意義得 += = = =≥ =2, 所以+的最小值為2. 典例 (10分)在平面直角坐標系中,以坐標原點為極點,x軸的正半軸為極軸建立極坐標系.已知直線l與橢圓C的極坐標方程分別為cos θ+2sin θ=0和ρ2=. (1)求直線l與橢圓C的直角坐標方程; (2)若Q是橢圓C上的動點,求點Q到直線l距離的最大值. 審題路線圖 ―→ 規(guī)范解答·評分標準 解 (1)由cos θ+2sin θ=0,得ρcos θ+2ρsin θ=0,即x+2y=0, 所以直線l的直角坐標方程為x+2y=0.

15、 由ρ2=,得ρ2cos2θ+4ρ2sin2θ=4,即x2+4y2=4,所以+y2=1. 所以橢圓C的直角坐標方程為+y2=1.…………………………………………………4分 (2)因為橢圓C:+y2=1的參數(shù)方程為(α為參數(shù)),……………………6分 可設Q(2cos α,sin α), 因此點Q到直線l:x+2y=0的距離 d==,………………………………………………………8分 所以當α=kπ+,k∈Z時,d取得最大值. 故點Q到直線l的距離的最大值為.10分 構(gòu)建答題模板 [第一步] 互化:將極坐標方程與直角坐標方程互化; [第二步] 引參:引進參數(shù),建立橢圓的參數(shù)方程;

16、 [第三步] 列式:利用距離公式求出距離表達式; [第四步] 求最值:利用三角函數(shù)求出距離的最值. 1.(2018·全國Ⅲ)在平面直角坐標系xOy中,⊙O的參數(shù)方程為(θ為參數(shù)),過點(0,-)且傾斜角為α的直線l與⊙O交于A,B兩點. (1)求α的取值范圍; (2)求AB中點P的軌跡的參數(shù)方程. 解 (1)⊙O的直角坐標方程為x2+y2=1. 當α=時,l與⊙O交于兩點. 當α≠時,記tan α=k,則l的方程為y=kx-.l與⊙O交于兩點,即點O到l的距離小于半徑1,當且僅當<1,解得k<-1或k>1,即α∈或α∈. 綜上,α的取值范圍是. (2)l的參數(shù)方程為.

17、設A,B,P對應的參數(shù)分別為tA,tB,tP, 則tP=,且tA,tB滿足t2-2tsin α+1=0. 于是tA+tB=2sin α,tP=sin α. 又點P的坐標(x,y)滿足 所以點P的軌跡的參數(shù)方程是. 2.已知曲線C的參數(shù)方程為(α為參數(shù)),以直角坐標系原點為極點,x軸正半軸為極軸建立極坐標系. (1)求曲線C的極坐標方程,并說明方程表示什么軌跡; (2)若直線l的極坐標方程為sin θ-cos θ=,求直線l被曲線C截得的弦長. 解 (1)因為曲線C的參數(shù)方程為 (α為參數(shù)), 所以曲線C的普通方程為(x-3)2+(y-1)2=10,① 曲線C表示以C(3,1

18、)為圓心,為半徑的圓. 將代入①并化簡,得ρ=6cos θ+2sin θ, 即曲線C的極坐標方程為ρ=6cos θ+2sin θ. (2)因為直線l的直角坐標方程為y-x=1, 所以圓心C到直線y=x+1的距離d=, 所以直線被曲線C截得的弦長為2=. 3.以坐標原點O為極點,x軸的正半軸為極軸建立極坐標系,已知曲線C的極坐標方程為ρ=4cos θ,曲線M的直角坐標方程為x-2y+2=0(x>0). (1)以曲線M上的點與點O連線的斜率k為參數(shù),寫出曲線M的參數(shù)方程; (2)設曲線C與曲線M的兩個交點為A,B,求直線OA與直線OB的斜率之和. 解 (1)由 得 由x>0,

19、得k>, 故曲線M的參數(shù)方程為. (2)由ρ=4cos θ,得ρ2=4ρcos θ, ∴x2+y2=4x. 將代入x2+y2=4x, 整理得k2-4k+3=0, ∴k1+k2=4. 故直線OA與直線OB的斜率之和為4. 4.在平面直角坐標系xOy中,直線l的參數(shù)方程為(t為參數(shù),0≤θ<π),以坐標原點為極點,x軸的正半軸為極軸建立極坐標系,圓C的極坐標方程為ρ=-4cos α,圓C的圓心到直線l的距離為. (1)求θ的值; (2)已知P(1,0),若直線l與圓C交于A,B兩點,求+的值. 解 (1)由直線l的參數(shù)方程為(t為參數(shù),0≤θ<π),消去參數(shù)t, 得xsin

20、 θ-ycos θ-sin θ=0. 圓C的極坐標方程為ρ=-4cos α, 即ρ2=-4ρcos α, 可得圓C的普通方程為x2+y2+4x=0, 即為(x+2)2+y2=4, 可知圓心為(-2,0),半徑為2,圓C的圓心到直線l的距離為d==3sin θ. 由題意可得d=, 即3sin θ=,則sin θ=, ∵0≤θ<π, ∴θ=或θ=. (2)已知P(1,0),則點P在直線l上,直線l與圓C交于A,B兩點,將 代入圓C的普通方程x2+y2+4x=0, 得(1+tcos θ)2+(tsin θ)2+4(1+tcos θ)=0, ∴t2+6tcos θ+5=0. 設A,B對應的參數(shù)為t1,t2, 則t1+t2=-6cos θ,t1t2=5, ∵t1t2>0,∴t1,t2同號, ∴+=+===.

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關資源

更多
正為您匹配相似的精品文檔
關于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!

五月丁香婷婷狠狠色,亚洲日韩欧美精品久久久不卡,欧美日韩国产黄片三级,手机在线观看成人国产亚洲