《高考數(shù)學(xué)二輪復(fù)習(xí) 專題四 數(shù)列、推理與證明 第3講 數(shù)列的綜合問題課件 文》由會(huì)員分享,可在線閱讀,更多相關(guān)《高考數(shù)學(xué)二輪復(fù)習(xí) 專題四 數(shù)列、推理與證明 第3講 數(shù)列的綜合問題課件 文(49頁珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、第3講數(shù)列的綜合問題專題四數(shù)列、推理與證明熱點(diǎn)分類突破真題押題精練熱點(diǎn)分類突破熱點(diǎn)一利用Sn,an的關(guān)系式求an1.數(shù)列an中,an與Sn的關(guān)系2.求數(shù)列通項(xiàng)的常用方法(1)公式法:利用等差(比)數(shù)列求通項(xiàng)公式.(2)在已知數(shù)列an中,滿足an1anf(n),且f(1)f(2)f(n)可求,則可用累加法求數(shù)列的通項(xiàng)an.(3)在已知數(shù)列an中,滿足 f(n),且f(1)f(2)f(n)可求,則可用累乘法求數(shù)列的通項(xiàng)an.(4)將遞推關(guān)系進(jìn)行變換,轉(zhuǎn)化為常見數(shù)列(等差、等比數(shù)列).例例1(2017運(yùn)城模擬)正項(xiàng)數(shù)列an的前n項(xiàng)和為Sn,滿足a 3an6Sn4.(1)求an的通項(xiàng)公式;解答即(an
2、1an)(an1an3)0,an0,an1an0,an1an30,即an1an3.an是以4為首項(xiàng),以3為公差的等差數(shù)列,an43(n1)3n1.解答思維升華(2)設(shè)bn2nan,求數(shù)列bn的前n項(xiàng)和Tn.解解bn2nan(3n1)2n,故Tn4217221023(3n1)2n,2Tn4227231024(3n1)2n1,Tn42132232332n(3n1)2n1213(222232n)(3n1)2n1(3n2)2n14,Tn(3n2)2n14.思維升華思維升華給出Sn與an的遞推關(guān)系,求an,常用思路:一是利用SnSn1an(n2)轉(zhuǎn)化為an的遞推關(guān)系,再求其通項(xiàng)公式;二是轉(zhuǎn)化為Sn的遞推
3、關(guān)系,先求出Sn與n之間的關(guān)系,再求an.解答解解當(dāng)n1時(shí),a1S12,由Sn2n12,得Sn12n2(n2),anSnSn12n12n2n (n2),又a1也符合,an2n (nN*).(2)求數(shù)列bn的前n項(xiàng)和Tn.解答熱點(diǎn)二數(shù)列與函數(shù)、不等式的綜合問題數(shù)列與函數(shù)的綜合問題一般是利用函數(shù)作為背景,給出數(shù)列所滿足的條件,通常利用點(diǎn)在曲線上給出Sn的表達(dá)式,還有以曲線上的切點(diǎn)為背景的問題,解決這類問題的關(guān)鍵在于利用數(shù)列與函數(shù)的對(duì)應(yīng)關(guān)系,將條件進(jìn)行準(zhǔn)確的轉(zhuǎn)化.數(shù)列與不等式的綜合問題一般以數(shù)列為載體,考查最值問題,不等關(guān)系或恒成立問題.例例2設(shè)fn(x)xx2xn1,x0,nN,n2.(1)求fn
4、(2);解答解解方法一方法一由題設(shè)fn(x)12xnxn1,所以fn(2)122(n1)2n2n2n1,則2fn(2)2222(n1)2n1n2n,由得,fn(2)12222n1n2n所以fn(2)(n1)2n1.(n1)2n1.證明思維升華證明證明因?yàn)閒n(0)10,又fn(x)12xnxn10,思維升華思維升華解決數(shù)列與函數(shù)、不等式的綜合問題要注意以下幾點(diǎn)(1)數(shù)列是一類特殊的函數(shù),函數(shù)定義域是正整數(shù),在求數(shù)列最值或不等關(guān)系時(shí)要特別重視.(2)解題時(shí)準(zhǔn)確構(gòu)造函數(shù),利用函數(shù)性質(zhì)時(shí)注意限制條件.(3)不等關(guān)系證明中進(jìn)行適當(dāng)?shù)姆趴s.證明跟蹤演練跟蹤演練2(2016屆浙江省寧波市期末)已知數(shù)列an
5、滿足a12,an12(Snn1)(nN*),令bnan1.(1)求證:bn是等比數(shù)列;證明證明a12,a22(22)8,an12(Snn1)(nN*)an2(Sn1n)(n2),兩式相減,得an13an2(n2).經(jīng)檢驗(yàn),當(dāng)n1時(shí)上式也成立,即an13an2(n1).所以an113(an1),即bn13bn,且b13.故bn是等比數(shù)列.(2)記數(shù)列nbn的前n項(xiàng)和為Tn,求Tn;解答解解由(1)得bn3n.Tn13232333n3n,3Tn132233334n3n1,兩式相減,得2Tn332333nn3n1證明熱點(diǎn)三數(shù)列的實(shí)際應(yīng)用用數(shù)列知識(shí)解相關(guān)的實(shí)際問題,關(guān)鍵是合理建立數(shù)學(xué)模型數(shù)列模型,弄清
6、所構(gòu)造的數(shù)列是等差模型還是等比模型,它的首項(xiàng)是什么,項(xiàng)數(shù)是多少,然后轉(zhuǎn)化為解數(shù)列問題.求解時(shí),要明確目標(biāo),即搞清是求和,還是求通項(xiàng),還是解遞推關(guān)系問題,所求結(jié)論對(duì)應(yīng)的是解方程問題,還是解不等式問題,還是最值問題,然后進(jìn)行合理推算,得出實(shí)際問題的結(jié)果.例例3自從祖國(guó)大陸允許臺(tái)灣農(nóng)民到大陸創(chuàng)業(yè)以來,在11個(gè)省區(qū)設(shè)立了海峽兩岸農(nóng)業(yè)合作試驗(yàn)區(qū)和臺(tái)灣農(nóng)民創(chuàng)業(yè)園,臺(tái)灣農(nóng)民在那里申辦個(gè)體工商戶可以享受“綠色通道”的申請(qǐng)、受理、審批一站式服務(wù),某臺(tái)商第一年年初到大陸就創(chuàng)辦了一座120萬元的蔬菜加工廠M,M的價(jià)值在使用過程中逐年減少,從第二年到第六年,每年年初M的價(jià)值比上年年初減少10萬元,從第七年開始,每年年
7、初M的價(jià)值為上年年初的75%.(1)求第n年年初M的價(jià)值an的表達(dá)式;解答解解當(dāng)n6時(shí),數(shù)列an是首項(xiàng)為120,公差為10的等差數(shù)列,故an12010(n1)13010n,當(dāng)n7時(shí),數(shù)列an從a6開始的項(xiàng)構(gòu)成一個(gè)以a61306070為首項(xiàng),以 為公比的等比數(shù)列,(2)設(shè)An ,若An大于80萬元,則M繼續(xù)使用,否則須在第n年年初對(duì)M更新,證明:必須在第九年年初對(duì)M更新.證明思維升華證明證明設(shè)Sn表示數(shù)列an的前n項(xiàng)和,由等差數(shù)列和等比數(shù)列的求和公式,得當(dāng)1n6時(shí),Sn120n5n(n1),當(dāng)n7時(shí),由于S6570,因?yàn)閍n是遞減數(shù)列,所以An是遞減數(shù)列.所以必須在第九年年初對(duì)M更新.思維升華思
8、維升華常見數(shù)列應(yīng)用題模型的求解方法(1)產(chǎn)值模型:原來產(chǎn)值的基礎(chǔ)數(shù)為N,平均增長(zhǎng)率為p,對(duì)于時(shí)間n的總產(chǎn)值yN(1p)n.(2)銀行儲(chǔ)蓄復(fù)利公式:按復(fù)利計(jì)算利息的一種儲(chǔ)蓄,本金為a元,每期的利率為r,存期為n,則本利和ya(1r)n.(3)銀行儲(chǔ)蓄單利公式:利息按單利計(jì)算,本金為a元,每期的利率為r,存期為n,則本利和ya(1nr).(4)分期付款模型:a為貸款總額,r為年利率,b為等額還款數(shù),則b .跟蹤演練跟蹤演練3一彈性小球從100 m高處自由落下,每次著地后又跳回原來高度的 再落下,設(shè)它第n次著地時(shí),共經(jīng)過了Sn,則當(dāng)n2時(shí),有A.Sn的最小值為100 B.Sn的最大值為400C.Sn0,因?yàn)閚N*,故n9,從而最小正整數(shù)n的值是10.