高中數(shù)學(xué)競賽教材講義 第五章 數(shù)列講義
《高中數(shù)學(xué)競賽教材講義 第五章 數(shù)列講義》由會員分享,可在線閱讀,更多相關(guān)《高中數(shù)學(xué)競賽教材講義 第五章 數(shù)列講義(8頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、 第五章 數(shù)列 一、基礎(chǔ)知識 定義1 數(shù)列,按順序給出的一列數(shù),例如1,2,3,…,n,…. 數(shù)列分有窮數(shù)列和無窮數(shù)列兩種,數(shù)列{an}的一般形式通常記作a1, a2, a3,…,an或a1, a2, a3,…,an…。其中a1叫做數(shù)列的首項(xiàng),an是關(guān)于n的具體表達(dá)式,稱為數(shù)列的通項(xiàng)。 定理1 若Sn表示{an}的前n項(xiàng)和,則S1=a1, 當(dāng)n>1時,an=Sn-Sn-1. 定義2 等差數(shù)列,如果對任意的正整數(shù)n,都有an+1-an=d(常數(shù)),則{an}稱為等差數(shù)列,d叫做公差。若三個數(shù)a, b, c成等差數(shù)列,即2b=a+c,則稱b為a和c的等差中項(xiàng),若公差為d, 則
2、a=b-d, c=b+d. 定理2 等差數(shù)列的性質(zhì):1)通項(xiàng)公式an=a1+(n-1)d;2)前n項(xiàng)和公式:Sn=;3)an-am=(n-m)d,其中n, m為正整數(shù);4)若n+m=p+q,則an+am=ap+aq;5)對任意正整數(shù)p, q,恒有ap-aq=(p-q)(a2-a1);6)若A,B至少有一個不為零,則{an}是等差數(shù)列的充要條件是Sn=An2+Bn. 定義3 等比數(shù)列,若對任意的正整數(shù)n,都有,則{an}稱為等比數(shù)列,q叫做公比。 定理3 等比數(shù)列的性質(zhì):1)an=a1qn-1;2)前n項(xiàng)和Sn,當(dāng)q1時,Sn=;當(dāng)q=1時,Sn=na1;3)如果a, b, c成等
3、比數(shù)列,即b2=ac(b0),則b叫做a, c的等比中項(xiàng);4)若m+n=p+q,則aman=apaq。 定義4 極限,給定數(shù)列{an}和實(shí)數(shù)A,若對任意的>0,存在M,對任意的n>M(n∈N),都有|an-A|<,則稱A為n→+∞時數(shù)列{an}的極限,記作 定義5 無窮遞縮等比數(shù)列,若等比數(shù)列{an}的公比q滿足|q|<1,則稱之為無窮遞增等比數(shù)列,其前n項(xiàng)和Sn的極限(即其所有項(xiàng)的和)為(由極限的定義可得)。 定理3 第一數(shù)學(xué)歸納法:給定命題p(n),若:(1)p(n0)成立;(2)當(dāng)p(n)時n=k成立時能推出p(n)對n=k+1成立,則由(1),(2)可得命題p(n)對一切自
4、然數(shù)n≥n0成立。 競賽常用定理 定理4 第二數(shù)學(xué)歸納法:給定命題p(n),若:(1)p(n0)成立;(2)當(dāng)p(n)對一切n≤k的自然數(shù)n都成立時(k≥n0)可推出p(k+1)成立,則由(1),(2)可得命題p(n)對一切自然數(shù)n≥n0成立。 定理5 對于齊次二階線性遞歸數(shù)列xn=axn-1+bxn-2,設(shè)它的特征方程x2=ax+b的兩個根為α,β:(1)若αβ,則xn=c1an-1+c2βn-1,其中c1, c2由初始條件x1, x2的值確定;(2)若α=β,則xn=(c1n+c2) αn-1,其中c1, c2的值由x1, x2的值確定。 二、方法與例題 1.不完全歸納法
5、。 這種方法是從特殊情況出發(fā)去總結(jié)更一般的規(guī)律,當(dāng)然結(jié)論未必都是正確的,但卻是人類探索未知世界的普遍方式。通常解題方式為:特殊→猜想→數(shù)學(xué)歸納法證明。 例1 試給出以下幾個數(shù)列的通項(xiàng)(不要求證明);1)0,3,8,15,24,35,…;2)1,5,19,65,…;3)-1,0,3,8,15,…。 【解】1)an=n2-1;2)an=3n-2n;3)an=n2-2n. 例2 已知數(shù)列{an}滿足a1=,a1+a2+…+an=n2an, n≥1,求通項(xiàng)an. 【解】 因?yàn)閍1=,又a1+a2=22·a2, 所以a2=,a3=,猜想(n≥1). 證明;1)當(dāng)n=1時,a1=
- 溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 物業(yè)管理制度:常見突發(fā)緊急事件應(yīng)急處置程序和方法
- 某物業(yè)公司冬季除雪工作應(yīng)急預(yù)案范文
- 物業(yè)管理制度:小區(qū)日常巡查工作規(guī)程
- 物業(yè)管理制度:設(shè)備設(shè)施故障應(yīng)急預(yù)案
- 某物業(yè)公司小區(qū)地下停車場管理制度
- 某物業(yè)公司巡查、檢查工作內(nèi)容、方法和要求
- 物業(yè)管理制度:安全防范十大應(yīng)急處理預(yù)案
- 物業(yè)公司巡查、檢查工作內(nèi)容、方法和要求
- 某物業(yè)公司保潔部門領(lǐng)班總結(jié)
- 某公司安全生產(chǎn)舉報獎勵制度
- 物業(yè)管理:火情火災(zāi)應(yīng)急預(yù)案
- 某物業(yè)安保崗位職責(zé)
- 物業(yè)管理制度:節(jié)前工作重點(diǎn)總結(jié)
- 物業(yè)管理:某小區(qū)消防演習(xí)方案
- 某物業(yè)公司客服部工作職責(zé)