4、5.(2018·湖北七校聯(lián)考)已知f(x)是奇函數(shù)且是R上的單調(diào)函數(shù),若函數(shù)y=f(2x2+1)+f(λ-x)只有一個(gè)零點(diǎn),則實(shí)數(shù)λ的值是( C )
(A) (B) (C)- (D)-
解析:令y=f(2x2+1)+f(λ-x)=0,
則f(2x2+1)=f(x-λ),
因?yàn)閒(x)是R上的單調(diào)函數(shù),
所以2x2+1=x-λ,只有一個(gè)實(shí)根,
即2x2-x+1+λ=0只有一個(gè)實(shí)根,
則Δ=1-8(1+λ)=0,解得λ=-.
6.(2018·北京燕博園聯(lián)考)已知函數(shù)f(x)=若函數(shù)y=f(x)-k有三個(gè)不同的零點(diǎn),則實(shí)數(shù)k的取值范圍是( C )
(A)(-2,2) (B)(-2,
5、1)
(C)(0,2) (D)(1,3)
解析:當(dāng)x<0時(shí),f(x)=x3-3x,則f′(x)=3x2-3,
令f′(x)=0,所以x=±1(舍去正根),
故f(x)在(-∞,-1)上單調(diào)遞增,在(-1,0)上單調(diào)遞減,
又f(x)=ln(x+1)在x≥0上單調(diào)遞增,
則函數(shù)f(x)的圖象如圖所示.
f(x)極大值=f(-1)=2,且f(0)=0,
故當(dāng)k∈(0,2)時(shí),y=f(x)-k有三個(gè)不同零點(diǎn).
7.(2017·河南焦作二模)已知函數(shù)f(x)=
F(x)=f(x)-x-1,且函數(shù)F(x)有2個(gè)零點(diǎn),則實(shí)數(shù)a的取值范圍為( C )
(A)(-∞,0] (B
6、)[1,+∞)
(C)(-∞,1) (D)(0,+∞)
解析:由題意,x≤0,F(x)=ex-x-1,有一個(gè)零點(diǎn)0;x>0,F(x)=x[x+(a-1)],因?yàn)楹瘮?shù)F(x)有2個(gè)零點(diǎn),
所以1-a>0,所以a<1.
故選C.
8.函數(shù)f(x)=-()x的零點(diǎn)個(gè)數(shù)為 .?
解析:令f(x)=0,得=()x.
在平面直角坐標(biāo)系中分別畫出函數(shù)y=與y=()x的圖象.如圖所示.
由圖可知兩函數(shù)圖象有1個(gè)交點(diǎn),故f(x)的零點(diǎn)只有一個(gè).
答案:1
9.(2018·衡水中學(xué)檢測(cè))已知函數(shù)f(x)=則函數(shù)y=2f2(x)-
3f(x)的零點(diǎn)個(gè)數(shù)是 .?
解析:由y=2
7、f2(x)-3f(x)=0,得
f(x)=0或f(x)=.
作出y=f(x)的圖象(如圖).
由圖象知,f(x)=0時(shí),方程有2個(gè)實(shí)根,
f(x)=時(shí),方程有3個(gè)實(shí)根.
故y=2f2(x)-3f(x)共有5個(gè)零點(diǎn).
答案:5
能力提升(時(shí)間:15分鐘)
10.函數(shù)f(x)=ln x+ex(e為自然對(duì)數(shù)的底數(shù))的零點(diǎn)所在的區(qū)間是( A )
(A)(0,) (B)(,1)
(C)(1,e) (D)(e,+∞)
解析:函數(shù)f(x)=ln x+ex在(0,+∞)上單調(diào)遞增,
因此函數(shù)f(x)最多只有一個(gè)零點(diǎn).
f(e-3)=-3+<-3+e<0,
又f()=ln +=-
8、1>0,
所以函數(shù)f(x)=ln x+ex(e為自然對(duì)數(shù)的底數(shù))的零點(diǎn)所在的區(qū)間是(0,).
11.(2017·全國(guó)Ⅲ卷)已知函數(shù)f(x)=x2-2x+a(ex-1+e-x+1)有唯一零點(diǎn),則a等于( C )
(A)- (B) (C) (D)1
解析:因?yàn)閥=x2-2x在x=1處有最小值-1,
y=ex-1+e-x+1在x=1處有最小值2.
又因?yàn)閒(x)有唯一的零點(diǎn),
所以當(dāng)x=1時(shí),f(x)有最小值f(1)=-1+2a=0,
所以a=.故選C.
12.(2018·河北保定第一次模擬)定義在R上的偶函數(shù)f(x)滿足f(x+1)=-f(x),當(dāng)x∈[0,
9、1]時(shí),f(x)=-2x+1,設(shè)函數(shù)g(x)=()|x-1|
(-1
10、為2×2=4.
13.(2018·河北邯鄲第一次模擬)若曲線y=log2(2x-m)(x>2)上至少存在一點(diǎn)與直線y=x+1上的一點(diǎn)關(guān)于原點(diǎn)對(duì)稱,則m的取值范圍為
.?
解析:因?yàn)橹本€y=x+1關(guān)于原點(diǎn)對(duì)稱的直線為
y=x-1.
依題意,方程log2(2x-m)=x-1在x∈(2,+∞)上有解,
則m=2x-1在x∈(2,+∞)上有解,所以m>2.
又2x-m>0在x∈(2,+∞)上恒成立,則m<(2x)min,所以m≤4.
所以實(shí)數(shù)m的取值范圍為(2,4].
答案:(2,4]
14.(2018·濟(jì)南質(zhì)檢)已知函數(shù)f(x)=若方程f(x)=ax有三個(gè)不同的實(shí)數(shù)根,則實(shí)數(shù)a的取值范圍是 .?
解析:在同一坐標(biāo)系內(nèi),作函數(shù)y=f(x)與y=ax的圖象.
當(dāng)y=ax是y=ln x的切線時(shí),設(shè)切點(diǎn)P(x0,y0),
因?yàn)閥0=ln x0,a=(ln x)′=,所以y0=ax0=1=ln x0,x0=e,故a=.
故y=ax與y=f(x)的圖象有三個(gè)交點(diǎn)時(shí),0