《福建省三明市寧化縣2018年中考數(shù)學(xué)第二輪復(fù)習(xí)練習(xí) 專題4 函數(shù)及其運(yùn)用》由會員分享,可在線閱讀,更多相關(guān)《福建省三明市寧化縣2018年中考數(shù)學(xué)第二輪復(fù)習(xí)練習(xí) 專題4 函數(shù)及其運(yùn)用(16頁珍藏版)》請?jiān)谘b配圖網(wǎng)上搜索。
1、專題四:函數(shù)及其圖像
一、選擇題
1.二次根式中,的取值范圍是( )
A. B. C. D.
2. 已知反比例函數(shù)的圖象過點(diǎn),則的值為( )
A. B. C. D.
3. 點(diǎn)在反比例函數(shù)的圖象上,則的值是( )
A.10 B.5 C. D.
4. 在平面直角坐標(biāo)系中,一次函數(shù)的圖象是( )
A. B. C. D.
5.把直線y=2x﹣1向左平移1個單位,平移后直線的關(guān)系式為( ?。?
A.y=2x﹣2 B.y=2x+1 C.y=2x D.y=2x+2
6. 某學(xué)校要種植一塊
2、面積為100的長方形草坪,要求兩邊長均不小于5,則草坪的一邊長為(單位:)隨另一邊長(單位:)的變化而變化的圖象可能是( )
A. B. C. D.
7.小明從家到學(xué)校,先勻速步行到車站,等了幾分鐘后坐上了公交車,公交車沿著公路勻速行駛一段時間后到達(dá)學(xué)校,小明從家到學(xué)校行駛路程s(m)與時間t(min)的大致圖象是( ?。?
A. B. C. D.
8. 已知一次函數(shù)的圖象與軸的負(fù)半軸相交,且函數(shù)值隨自變量的增大而減小,則下列結(jié)論正確的是( )
A. B. C. D.
9. 一次函數(shù)與反比例函數(shù),其中,為常數(shù),它們在同一坐
3、標(biāo)系中的圖象可以是( ).
A. B. C. D.
10.反比例函數(shù)y=的圖象如圖所示,則一次函數(shù)y=kx+b(k≠0)的圖象大致是( ?。?
A. B. C. D.
二、填空題:
11.函數(shù)y=中,自變量x的取值范圍是 ?。?
12.如圖,已知一次函數(shù)y=kx﹣3(k≠0)的圖象與x軸,y軸分別交于A,B兩點(diǎn),與反比例函數(shù)y=(x>0)交于C點(diǎn),且AB=AC,則k的值為 ?。?
第12題 第13題 第14題
13.如圖,已知點(diǎn)A,B分別在反比例函數(shù)y1=﹣和
4、y2=的圖象上,若點(diǎn)A是線段OB的中點(diǎn),則k的值為 .
14.如圖,直線與軸分別交于,與反比例函數(shù)的圖象在第二象限交于點(diǎn).過點(diǎn)作軸的垂線交該反比例函數(shù)圖象于點(diǎn).若,則點(diǎn)的坐標(biāo)為 .
15. “和諧號”火車從車站出發(fā),在行駛過程中速度 (單位:)與時間 (單位:)的關(guān)系如圖所示,其中線段軸.
(1)當(dāng),求關(guān)于的函數(shù)解析式;
(2)求點(diǎn)的坐標(biāo).
16.如圖,一次函數(shù)y=kx+b的圖象與坐標(biāo)軸分別交于A、B兩點(diǎn),與反比例函數(shù)y=的圖象在第一象限的交點(diǎn)為C,CD⊥x軸,垂足為D,若OB=3,OD=6,△AOB的面積為3.
(1)求一次函數(shù)與反比例函數(shù)的解析式;
5、
(2)直接寫出當(dāng)x>0時,kx+b﹣<0的解集.
17.已知A(﹣4,2)、B(n,﹣4)兩點(diǎn)是一次函數(shù)y=kx+b和反比例函數(shù)圖象的兩個交點(diǎn).
(1)求一次函數(shù)和反比例函數(shù)的解析式;
(2)求△AOB的面積;
(3)觀察圖象,直接寫出不等式的解集.
18.如圖,在平面直角坐標(biāo)系中,已知正比例函數(shù)的圖象與反比例函數(shù)的圖象交于兩點(diǎn).
(1)求反比例函數(shù)的表達(dá)式和點(diǎn)的坐標(biāo);
(2)是第一象限內(nèi)反比例函數(shù)圖像上一點(diǎn),過點(diǎn)作軸的平行線,交直線于點(diǎn),連接,若的面積為3,求點(diǎn)的坐標(biāo).
19.已知函數(shù),,k、b為整數(shù)且.
(1)討論b,k的取值.
(2)分別畫出兩種函數(shù)的
6、所有圖象.(不需列表)
(3)求與的交點(diǎn)個數(shù).
20. 如圖,直線與雙曲線(為常數(shù),)在第一象限內(nèi)交于點(diǎn),且與軸、軸分別交于,兩點(diǎn).
(1)求直線和雙曲線的解析式;
(2)點(diǎn)在軸上,且的面積等于,求點(diǎn)的坐標(biāo).
21.已知:如圖,一次函數(shù) 與反比例函數(shù)的圖象有兩個交點(diǎn)和,過點(diǎn)作軸,垂足為點(diǎn);過點(diǎn)作作軸,垂足為點(diǎn),且點(diǎn)的坐標(biāo)為,連接.
(1)求的值;
(2)求四邊形的面積.
22.在平面直角坐標(biāo)系中,一次函數(shù)y=kx+b(k,b都是常數(shù),且k≠0)的圖象經(jīng)過點(diǎn)(1,0)和(0,2).
(1)當(dāng)﹣2<x≤3時,求y的取值范圍;
(2)已知點(diǎn)P(m,n)在該函數(shù)的圖象上
7、,且m﹣n=4,求點(diǎn)P的坐標(biāo).
23.如圖,直線y=k1x(x≥0)與雙曲線y=(x>0)相交于點(diǎn)P(2,4).已知點(diǎn)A(4,0),B(0,3),連接AB,將Rt△AOB沿OP方向平移,使點(diǎn)O移動到點(diǎn)P,得到△A'PB'.過點(diǎn)A'作A'C∥y軸交雙曲線于點(diǎn)C.
(1)求k1與k2的值;
(2)求直線PC的表達(dá)式;
(3)直接寫出線段AB掃過的面積.
答案
一、選擇題:
1.A 2.C. 3.D. 4.B. 5.B. 6.C 7.C 8.A 9.C 10.D.
二、填空題:
11.x≥2 12. . 13.-8 14.(﹣3,
8、4﹣2)
15.【答案】(1)y=5x(2)(60,90)
【解析】
考點(diǎn):一次函數(shù)的應(yīng)用
16.【答案】(1)y=x﹣2,y= (2)0<x<6
【解析】
(2)當(dāng)x>0時,kx+b﹣<0的解集是0<x<6.
考點(diǎn):1、待定系數(shù)法求出函數(shù)的解析式,2、一次函數(shù)和和反比例函數(shù)的交點(diǎn)問題,3、函數(shù)的圖象的應(yīng)用
17.【答案】(1)y=﹣x﹣2,;(2)6;(3)x<﹣4或0<x<2.
【解析】
(2)y=﹣x﹣2中,令y=0,則x=﹣2,即直線y=﹣x﹣2與x軸交于點(diǎn)C(﹣2,0),∴S△AOB=S△AOC+S△BOC=×2×2+×2×4=6;
(3)由圖可得,不等式
9、的解集為:x<﹣4或0<x<2.
考點(diǎn):反比例函數(shù)與一次函數(shù)的交點(diǎn)問題;待定系數(shù)法求一次函數(shù)解析式.
18.【答案】(1); (2)或
【解析】
聯(lián)立或,
∴;
(2)如圖,過點(diǎn)作軸,
考點(diǎn):反比例函數(shù)與一次函數(shù)
19.【答案】(1) ;(2)詳見解析;(3)4.
【解析】
(2)如圖:
考點(diǎn):一次函數(shù),反比例函數(shù),分類討論思想,圖形結(jié)合思想.
20.【答案】(1)直線的解析式為y=x+1;雙曲線的解析式為y=;(2)P點(diǎn)的坐標(biāo)為(3,0)或(-5,0).
考點(diǎn):反比例函數(shù)與一次函數(shù)的交點(diǎn)問題.
21.【答案】(1)k=-3(2)
【解
10、析】
(2)延長AE,BD交于點(diǎn)H
∵BD∥x軸
∴
又∵點(diǎn)D(0,-2)
∴=-2
將=-2代入y=-中,可得x=
∴B(,-2)
∴H(-1,-2),E(-1,0)
∴HE=2,DH=1,AH=3-(-2)=5,BH=-(-1)=
∴
===
考點(diǎn):1、反比例函數(shù)與一次函數(shù)的交點(diǎn)問題;2、平面直角坐標(biāo)系中面積問題
22.【答案】(1)y的取值范圍是﹣4≤y<6(2)點(diǎn)P的坐標(biāo)為(2,﹣2)
【解析】
(2)∵點(diǎn)P(m,n)在該函數(shù)的圖象上,
∴n=﹣2m+2,
∵m﹣n=4,
∴m﹣(﹣2m+2)=4,
解得m=2,n=﹣2,
∴點(diǎn)P的坐標(biāo)為(2,﹣2).
23.【答案】(1)2,8(2)y=﹣x+(3)22
【解析】
(2)∵A(4,0),B(0,3),
∴AO=4,BO=3,
如圖,延長A'C交x軸于D,
由平移可得,A'P=AO=4,
又∵A'C∥y軸,P(2,4),
∴點(diǎn)C的橫坐標(biāo)為2+4=6,
當(dāng)x=6時,y==,即C(6,),
設(shè)直線PC的解析式為y=kx+b,
把P(2,4),C(6,)代入可得
,解得 ,
∴直線PC的表達(dá)式為y=﹣x+;
考點(diǎn):1、反比例函數(shù)與一次函數(shù)的交點(diǎn)問題;2、待定系數(shù)法求一次函數(shù)解析式;3、坐標(biāo)與圖形變化﹣平移