部審人教版九年級數(shù)學(xué)下冊教案28.1 第1課時 正弦函數(shù)
《部審人教版九年級數(shù)學(xué)下冊教案28.1 第1課時 正弦函數(shù)》由會員分享,可在線閱讀,更多相關(guān)《部審人教版九年級數(shù)學(xué)下冊教案28.1 第1課時 正弦函數(shù)(3頁珍藏版)》請在裝配圖網(wǎng)上搜索。
28.1銳角三角函數(shù) 第1課時 正弦函數(shù) 1.能根據(jù)正弦概念正確進(jìn)行計算;(重點) 2.能運(yùn)用正弦函數(shù)解決實際問題.(難點) 一、情境導(dǎo)入 牛莊打算新建一個水站,在選擇水泵時,必須知道水站(點A)與水面(BC)的高度(AB).斜坡與水面所成的角(∠C)可以用量角器測出來,水管的長度(AC)也能直接量得. 二、合作探究 探究點一:正弦函數(shù) 如圖,sinA等于( ) A.2 B. C. D. 解析:根據(jù)正弦函數(shù)的定義可得sinA=,故選C. 方法總結(jié):我們把銳角A的對邊a與斜邊c的比叫做∠A的正弦,記作sinA.即sinA==. 變式訓(xùn)練:見《學(xué)練優(yōu)》本課時練習(xí)“課堂達(dá)標(biāo)訓(xùn)練” 第2題 探究點二:正弦函數(shù)的相關(guān)應(yīng)用 【類型一】 在網(wǎng)格中求三角函數(shù)值 如圖,在正方形網(wǎng)格中有△ABC,則sin∠ABC的值等于( ) A. B. C. D.10 解析:∵AB=,BC=,AC=,∴AB2=BC2+AC2,∴∠ACB=90,∴sin∠ABC===.故選B. 方法總結(jié):解決有關(guān)網(wǎng)格的問題往往和勾股定理及其逆定理相聯(lián)系,根據(jù)勾股定理求出三邊長度,再運(yùn)用勾股定理的逆定理判斷三角形形狀. 變式訓(xùn)練:見《學(xué)練優(yōu)》本課時練習(xí)“課后鞏固提升”第3題 【類型二】 已知三角函數(shù)值,求直角三角形的邊長 在Rt△ABC中,∠C=90,BC=4,sinA=,則AB的長為( ) A. B.6 C.12 D.8 解析:∵sinA===,∴AB=6.故選B. 方法總結(jié):根據(jù)正弦定義表示出邊的關(guān)系,然后將數(shù)值代入求解,記住定義是解決問題的關(guān)鍵. 變式訓(xùn)練:見《學(xué)練優(yōu)》本課時練習(xí)“課堂達(dá)標(biāo)訓(xùn)練” 第6題 【類型三】 三角函數(shù)與等腰三角形的綜合 已知等腰三角形的一條腰長為25cm,底邊長為30cm,求底角的正弦值. 解析:先作底邊上的高AD,根據(jù)等腰三角形三線合一的性質(zhì)得到BD=BC=15cm,再由勾股定理求出AD,然后根據(jù)三角函數(shù)的定義求解. 解:如圖,過點A作AD⊥BC,垂足為D.∵AB=AC=25cm,BC=30cm,AD為底邊上的高,∴BD=BC=15cm.由勾股定理得AD==20cm,∴sin∠ABC===. 方法總結(jié):求三角函數(shù)值一定要在直角三角形中求值,當(dāng)圖形中沒有直角三角形時,要通過作高,構(gòu)造直角三角形解答. 變式訓(xùn)練:見《學(xué)練優(yōu)》本課時練習(xí)“課堂達(dá)標(biāo)訓(xùn)練”第4題 【類型四】 在復(fù)雜圖形中求三角函數(shù)值 如圖,在△ABC中,AD⊥BC于D,如果AD=9,DC=5,E為AC的中點,求sin∠EDC的值. 解析:首先利用勾股定理計算出AC的長,再根據(jù)直角三角形的性質(zhì)可得DE=EC,根據(jù)等腰三角形性質(zhì)可得∠EDC=∠C,進(jìn)而得到sin∠EDC=sin∠C=. 解:∵AD⊥BC,∴∠ADC=90,∵AD=9,DC=5,∴AC==.∵E為AC的中點,∴DE=AE=EC=AC,∴∠EDC=∠C,∴sin∠EDC=sin∠C===. 方法總結(jié):求三角函數(shù)值的關(guān)鍵是找準(zhǔn)直角三角形或利用等量代換將角或線段轉(zhuǎn)化進(jìn)行解答. 變式訓(xùn)練:見《學(xué)練優(yōu)》本課時練習(xí)“課后鞏固提升”第8題 【類型五】 在圓中求三角函數(shù)值 如圖,已知AB是⊙O的直徑,CD是弦,且CD⊥AB,BC=6,AC=8,求sin∠ABD的值. 解析:首先根據(jù)垂徑定理得出∠ABD=∠ABC,然后由直徑所對的圓周角是直角,得出∠ACB=90,根據(jù)勾股定理算出斜邊AB的長,再根據(jù)正弦的定義求出sin∠ABC的值,從而得出sin∠ABD的值. 解:由條件可知=,∴∠ABD=∠ABC,∴sin∠ABD=sin∠ABC.∵AB為直徑,∴∠ACB=90.在Rt△ABC中,∵BC=6,AC=8,∴AB==10,∴sin∠ABD=sin∠ABC==. 方法總結(jié):求三角函數(shù)值時必須在直角三角形中.在圓中,由直徑所對的圓周角是直角可構(gòu)造出直角三角形. 變式訓(xùn)練:見《學(xué)練優(yōu)》本課時練習(xí)“課后鞏固提升”第7題 三、板書設(shè)計 1.正弦的定義; 2.利用正弦解決問題. 在教學(xué)過程中,重視過程,深化理解,通過學(xué)生的主動探究來體現(xiàn)他們的主體地位,教師是通過對學(xué)生參與學(xué)習(xí)的啟發(fā)、調(diào)整、激勵來體現(xiàn)自己的引導(dǎo)作用,對學(xué)生的主體意識和合作交流的能力起著積極作用. 第 3 頁 共 3 頁- 1.請仔細(xì)閱讀文檔,確保文檔完整性,對于不預(yù)覽、不比對內(nèi)容而直接下載帶來的問題本站不予受理。
- 2.下載的文檔,不會出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請點此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
4 積分
下載 |
- 配套講稿:
如PPT文件的首頁顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計者僅對作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 部審人教版 九年級 數(shù)學(xué) 下冊 教案 28
鏈接地址:http://m.jqnhouse.com/p-11004719.html