0305-基于proe的汽車閥體零件機械加工工藝及夾具設計【鉆孔夾具】【全套14張CAD圖】
0305-基于proe的汽車閥體零件機械加工工藝及夾具設計【鉆孔夾具】【全套14張CAD圖】,鉆孔夾具,全套14張CAD圖,基于,proe,汽車,閥體,零件,機械,加工,工藝,夾具,設計,鉆孔,全套,14,cad
附錄: Micro-machine
From the beginning, mankind seems instinctively to have desired large machines and small machines. That is, large” and “small” in comparison with human-scale. Machine larger than human are powerful allies in the battle against the fury of nature; smaller machines are loyal partners that do whatever they are told.
1.introduce
If we compare the facility and technology of manufacturing larger machines, common sense tells us that the smaller machines are easier to make. Nevertheless, throughout the history of technology, larger machines have always stood out. The size of the restored models of the water-mill invented by Vitruvius in the Roman Era, the windmill of the Middle Ages, and the steam engine invented by Watt is overwhelming. On the other hand, smaller machines in history of technology are mostly tools. If smaller machines are easier to make, a variety of such machines should exist, but until modern times, no significant small machines existed except for guns and clocks
This fact may imply that smaller machines were actually more difficult to make. Of course , this does not mean simply that it was difficult to make a small machine; It means that it was difficult to invent a small machine that would be significant to human beings.
Some people might say that mankind may not have wanted smaller machines. This theory, however ,dies not explain the recent popularity of palm-size mechatronics products.
Some people might say that mankind may not have wanted smaller machines. This theory, however, does not explain the recent popularity of palm-size mechatronics products.
The absence of small machines in history may be due to the extreme difficulty in manufacturing small precision parts.
2. Why micromachine now
The dream of the ultimate small machine, or micro-machine, was first depicted in detail about 30 years ago in the 1966 movie “Fantastic Voyage”. At that time, the study of micro-machining of semiconductors had already begun. Therefore, manufacturing minute mechanisms through micro-machining of semiconductors would have been possible, even that time,. There was, however, a wait of over 20 years before the introduction, about 10 years ago, of electrostatic motors and gears made by semiconductor micromachining.
Why didn’t the study of micro-machining and the dream of micro-machines meet earlier? A possible reason for this is as follows. In addition to micro-machining, the development of micromachines requires a number of technologies including materials, instrumentations, control, energy, information processing, and design. Before micro-machine research and development can be started, all of these technologies must reach a certain level. In other words, the overall technological level, as a whole, must reach a certain critical point, but it hadn’t reached that point 30 ago.
Approximately 20 years after “Fantastic Voyage”., the technology level for micromachines finally reached a critical point. Micromotors and gears made by semiconductor micromachining were introduced at about that time, triggering the research on development of micromachines.
The backgroud of the micromachine boom, which started about 10 years ago, can be explained by the above.
3.micromachine as gentle machines
How do micromachines of the future differ from conventional machines? How will they change the relationship between nature and humans?
The most unique feature of micro-machine is, of course, its small size. Utilizing its tiny dimensions, a micromachine can perform tasks in a revolutionary way that would be impossible for conventional machines. That is, micro-machines do not affect the object or the environment as much as conventional machines do. Micromachines perform their tasks gently. This is a fundamental difference between micromachines and conventional machines.
The medical field holds the highest expectations for benefits from this feature of micromachines. Diadnosis and treatment will change drastically from conventional methods, and “Fantastic Voyage” may no longer be a fantasy. If a micromachine can gently enter a human body to treat illness, humans will be freed from painful surgery and uncomfortable gastro-camera testing. Furtherore, if micro-machines can halt the trend of ever-increasing size in medical equipment, it could slow the excess growth and complexity of medical technology, contributing to the solving of serious problems with high medical costs for citizens.
Micro-machines are gentle also in terms of machine maintenance, since they can be inspected and repaired without difficulty in reaching and overhauling the engine or plant. The more complex the machine, the more susceptible it is to malfunction due to overhaul and assembly. In addition, there have been more instances of human errors during overhaul and assembly. It is good for the machine if overhaul is not necessary. It is even better if maintenance can be performed without stopping the machine. Repeated stop-and-go operation will accelerate damage of the machine due to excess stress caused by thermal expansion.
Such gentleness of a mocromachine is an advantage, as well as a weakness in that a micromachine is too fragile to resist the object or the environment; this is the drawback of the micro-scale objects.
For example, a fish can swim freely against the current, but a small plankton cannot. This is result of physical laws and nothing can change it. Still, the plankton can live and grow in the natural environment by conforming to the environment.
Unlike conventional machines which fight and control natural, micromachines will probably adapt to and utilize nature. If a micromachine cannot proceed against the current, a way will be found to proceed with the flow, naturally avoiding collisions with obstacles.
4. Micro-electronics and mechatronics
The concept of micromachines and related technologies is still not adequately unified, as these are still at the development stage. The micromachines and related technologies are currently referred to by a variety of different terms. In the United States, the accepted term is “micro electro mechanical systems” (MEMS); in Europe, The term “Microsystems technology”(MST) is common, while the term “micro-engineering” is sometimes used in Britain. Meanwhile in Australia “micro-machine”. The most common term if it is translated into English is “micromachine”. The most common term if it is translated into English is “micromachine” in Japan. However “micro-robot” and “micro-mechanism” are also available case by case.
The appearance of these various terms should be items taken as reflecting not merely diversity of expression, but diversity of the items referred to. Depending on whether the item referred to is an object or a technology, the terminology may be summed up as follows:
Object: micro-robot, micro-mechanism
Technology: micro-engineering, MST
Object & technology: MEMS, micro-machine
With regard to technology, if we summarize the terms according to 1) where the technology for micromachine systems branched from, and 2) whether the object dealt with by the technology in question is an element or a machine system, the terms can be organized as follows. That is, MEMS and MST stem from mechatronics, and have developed dealing mainly with machine systems. In this sense, MEMS and MST on the one hand micromachines and microengineering on the other hand form two separate groups, but as former has started to move in the direction of machine systems, while the latter has already incorporated microelectronics, the difference between the two groups are gradually disappearing.
Looking at the areas in the two groups, given that the machine systems which are the main concern of micromachine include microelectronics, it would be natural to assume that micromachines inchude MEME and MST.
5 .the definition and development aim
It is difficult at present to give a unified definition of micromachines, but if these are taken to be machine systems as output of micromachine technology, the scope for variation of the definition narrows slightly.
The micromachine technology project being project being promoted under the Industrial Science and Technology Frontier Program Agency of Industrial Science and Technology of MITI, and the micro-machine Center, define micro-machines as follows:
Micro-machines are small machines composed of sophisticated functional elements less than a few millimeters in size, constructed to perform complex tasks on a small scale.
The above definition of micro-machines is in fact inseparable from the development aims for micro-machines. At present, debate on the definition of micro-machines is exactly the same as debating development aims, that is, the diversity of definitions of micromachines reflects the diversity of development aims.
6.Conclusions.
Micromachines are unconventional artifacts with respects to their gentle features to people and nature. The current diversity of the definition of them is originated from development objectives and technological starting points. Micromachine technologies, in view of their development prospect, are expected as generic technologies for the twenty-first century to support industry and medicine as well as daily life. Micromachine technologies are essential also for improving the conventional machines in general.
Micro-machines are artifacts in tiny size, but they will exert a strong influence on our lifestyles and society.
譯文:
微 型 機 器
從一開始,人類似乎本能的就有一種想制造“大機器”和“小機器”的愿望,這里的所謂“大”和“小”是相對人類身體本身的尺寸而言。比人體大的機器將成為人類同暴虐無情的自然界做斗爭的得力助手,而些小機器則只能乖乖地聽從人類的命令,讓干什么就干什么。
1、介紹
如果我們比較那些比較大的機器的設備和生產科技,普通的感覺告訴我們,小機器容易制造,然而,在全歷史期間,大機器已經闡述了這一點。在羅馬時期,威克威斯發(fā)明的在水戰(zhàn)中已經修復過的模型尺寸,還有,中世紀的風車和瓦特發(fā)明的蒸汽機正在代替。在另一方面,科技歷史上的小機器主要是工具,如果小機器容易制造,像這樣的很多種機器應該存在。但直到現(xiàn)代,除了槍和時鐘之外,沒有標志性的小機器誕生。
這個事實可能暗示小機器實際上更難制造。當然,這不簡單地意味著制造一個小機器是困難的。它意味著發(fā)明一個對人類有標志性意義的小機器是困難的。
一些人可能說人類不想要小機器,然而,這個理論不能解釋近來流行的袖珍型的機械產品。
歷史上小機器的缺乏可能因為在生產小的精確部分的困難。
2、為什么現(xiàn)在有微型機器
最后的小機器的夢想,或者微型機器,大約在三十年前,即1966年由影片“夢幻旅行”里,第一次詳細的描敘了。在那個時候半導體的微型機器的研究已經開始了。甚至在那個時候通過半導體的小機器的微小生產機械化已經可能了,然而,在大約十年以前通過半導體小機械制造的馬達和傳動裝置的產品出現(xiàn)之前等了二十年。
為什么小機器的研究和夢想不能早點滿足呢?可能是下面這些原因,除微型機器外,小微型機器的發(fā)展要求很多科技,包括材料控制,能量,信息進程和設計,在微型機器可能開始被研究和發(fā)展之前,所有的這些科技必須達到某一定的水平。換句話說,總之,全面的科技水平必須達到關鍵的一點,但是在三十年前沒有達到那點。
大約在“夢幻旅行”之后二十年,微型機器的科技水平最后達到了關鍵點上,也大約在那個時候通過半導體的微型機械制造的微型馬達和傳動裝置的被介紹,啟發(fā)了微型機器發(fā)展的研究。
大約在十年前開始的微型機械繁榮的背景可能是上述原因。
3、微型機器作為好機器
怎樣區(qū)別將來的微型機器和一般機器?他們將怎樣改變人類和自然的關系?
當然,微型機器最獨特的特征是:它是很小的,利用它微小的尺寸,改革后的微型機器將可能像一般機器一樣執(zhí)行任務,那就是微型機器不影響物體和環(huán)境,就像一般機器一樣,能很好的執(zhí)行任務。這就是一般機器和微型機器之間的基本區(qū)別。
醫(yī)療領域只有最高期望:從微型機器中可以得到益處,診斷和治療將從一般方式徹底改變,“夢幻旅行”不可能是個夢想。如果機器能夠進入人的身體治療疾病,人類將減輕像手術一樣的痛苦和透射那樣的不舒服感,而且,在醫(yī)療器械方面如果微型機器能夠停止尺寸增長的趨勢,它可能減少醫(yī)療科技方面的增長和復雜,而醫(yī)療科技將為人們解決嚴重問題。
微型機器在機器維修方面也是很方便的。但是在拖動設備時它們不能方便的修理,因為拖動和安裝,機器越復雜,功能越敏銳。而且,在拖動和安裝時,人們出現(xiàn)的錯誤有很多情況,如果沒有必要拖動,對機器來講是有益處的。如果不用停止機器就可以維修的話是最好的。反復的開和停,將會加速機器的損壞,這是因為冷氣裝置的膨脹引起壓力。
這樣好的微型機器有優(yōu)點也有缺點。那就是微型機器太脆弱不能抵制周圍環(huán)境和物體,這是因為缺少微型物。
例如,魚在水里能很自由的游,但是浮游生物不能,這是自然規(guī)律,沒有什么能改變,然而,浮游生物能夠在合適的環(huán)境里生活和成長。
不象一般機器能對抗或控制自然,微型機器只可能適應和利用自然,如果微型機器不能加速潮流,那么跟隨潮流將會發(fā)現(xiàn)一種方法,這樣可自然的避免碰撞和障礙。
4、微電
微型機器的概念和相關的科技不能充分的成為一體,因為這也是發(fā)展的階段,微機和相關科技當今由不同時期決定,在美國,接受的時期是“微電機械化系統(tǒng)”,在歐洲,“微系統(tǒng)科技”時期很普通,而在英國,有時候是“微電”而同時在澳大利亞用“微型機器”,在日本的時期如果翻譯成英語就是“微機”,然而,“微機器人”和“微機械化”也是有益的。
這些不同時期的出現(xiàn)是反映而不僅僅是表達的不同,是指一系列的不同,根據(jù)指的物體還是科技,可用下列術語綜合:
物體:微機器人,微機械化
科技:機電,MST
物體與科技:MEMS,微機
關于科技,如果我們根據(jù)1)總結的時期分離出機械化系統(tǒng)的科技,根據(jù)2)是否可懷疑通過科技處理的物體,是一個基本元素還是機械系統(tǒng)??偨Y如下:那就是,從機械化MEMS和MST系列,已經發(fā)展處理主要的機械系統(tǒng),在這種情況下一方面MEMS,MST,微機和微電,另一方面形成兩個分離的組。但是以前已經開始了機械系統(tǒng)移動的方向,然而后來已經混合了微電,這兩組之間的區(qū)別是逐漸消失的。
在這兩組看,假設機械系統(tǒng),它是主要包括基本元素的微機;假定微機包括微電,那么假設微機包括MEMS和MST是很自然的。
5、定義和發(fā)展目標
現(xiàn)在對微機下一個相一致的定義是困難的,但是如果這些極限當作機械系統(tǒng)作為微機科技的產量,那么定義變化的儀器有點狹窄。
通過工業(yè)科學和科技領域的計劃以及微機中心,促進了微機科技。定義微機如下:
微機是小的機器,由少于一毫m的復雜功能元素組成。用在一個小的尺度上,裝配來執(zhí)行復雜的任務。
以上微機的定義事實上是不能從微機發(fā)展的目標中分離開來的。目前,既討論微機的定義,同時討論發(fā)展的目標,那就是,微機的不同定義反映了發(fā)展目標的不同。
6、結論
微機是不方便的,因為它們對人類而言所具有的特征。現(xiàn)在定義的不同是源于發(fā)展目標和科技起點?;乜此陌l(fā)展景色,微機科技被期望像一般科技一樣,在二十一世紀支持工業(yè)和醫(yī)療,跟日常生活相似??偟膩碚f,為提高普通機器,微科技是必要的。微機在微小尺寸方面是人造物品,但它們將對我們的生活和社會產生強烈的影響。
8
收藏