高考數(shù)學(xué)三輪增分練 高考小題分項(xiàng)練10 圓錐曲線 文
《高考數(shù)學(xué)三輪增分練 高考小題分項(xiàng)練10 圓錐曲線 文》由會(huì)員分享,可在線閱讀,更多相關(guān)《高考數(shù)學(xué)三輪增分練 高考小題分項(xiàng)練10 圓錐曲線 文(4頁珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
高考小題分項(xiàng)練10 圓錐曲線 1.橢圓+=1的兩個(gè)焦點(diǎn)分別為點(diǎn)F1,F(xiàn)2,點(diǎn)P是橢圓上任意一點(diǎn)(非左,右頂點(diǎn)),則△PF1F2的周長(zhǎng)為________. 答案 10 解析 由+=1知a=3,b=,c==2, 所以△PF1F2周長(zhǎng)為2a+2c=6+4=10. 2.拋物線y2=4x的焦點(diǎn)到雙曲線-=1漸近線的距離為________. 答案 解析 拋物線y2=4x的焦點(diǎn)為(1,0),雙曲線-=1漸近線為y=x,3x4y=0,所求距離為d==. 3.已知雙曲線C:-=1 (a>0,b>0)的焦距為10,點(diǎn)P(1,2)在C的漸近線上,則C的方程為__________. 答案?。? 解析 由題意,得雙曲線的漸近線方程為y=x, 且c=5.因?yàn)辄c(diǎn)P(1,2)在C的漸近線上,所以b=2a, 所以a2=5,b2=20. 4.如圖,拋物線形拱橋的頂點(diǎn)距水面4米時(shí),測(cè)得拱橋內(nèi)水面寬為16米;當(dāng)水面升高3米后,拱橋內(nèi)水面的寬度為______米. 答案 8 解析 以頂點(diǎn)為坐標(biāo)原點(diǎn),平行水面的直線為x軸建系,設(shè)拋物線方程為x2=my,因?yàn)檫^點(diǎn)(8,-4),所以m=-16,令y=-1得|x|=4,從而水面的寬度為8米. 5.設(shè)F是雙曲線的一個(gè)焦點(diǎn),點(diǎn)P在雙曲線上,且線段PF的中點(diǎn)恰為雙曲線虛軸的一個(gè)端點(diǎn),則雙曲線的離心率為________. 答案 解析 不妨設(shè)-=1,F(xiàn)(c,0), 則點(diǎn)P(-c,2b),從而有-=1?=5?e=. 6.雙曲線C:-=1(a>0,b>0)與拋物線y2=2px(p>0)相交于A,B兩點(diǎn),直線AB恰好過它們的公共焦點(diǎn)F,則雙曲線C的離心率為________. 答案 1+ 解析 由題意,得xA=xB==c, |yA|= =p=2c, 因此-=1?=?b2=2ac?c2-a2=2ac ?e2-2e-1=0?e=1+(負(fù)值舍去). 7.已知a>b>0,橢圓C1的方程為+=1,雙曲線C2的方程為-=1,C1與C2的離心率之積為,則C2的漸近線方程為____________. 答案 xy=0 解析 a>b>0,橢圓C1的方程為+=1,離心率為;雙曲線C2的方程為-=1,離心率為. ∵C1與C2的離心率之積為, ∴ =, ∴()2=,=, C2的漸近線方程為:y=x, 即xy=0. 8.我們把焦點(diǎn)相同,且離心率互為倒數(shù)的橢圓和雙曲線稱為一對(duì)“相關(guān)曲線”.已知點(diǎn)F1、F2是一對(duì)相關(guān)曲線的焦點(diǎn),點(diǎn)P是它們?cè)诘谝幌笙薜慕稽c(diǎn),當(dāng)∠F1PF2=30時(shí),這一對(duì)相關(guān)曲線中橢圓的離心率是________. 答案 2- 解析 由題意設(shè)橢圓方程為+=1, 雙曲線方程為-=1,且c=c1. 由題意=1,(*) 又∠F1PF2=30,由余弦定理得: 在橢圓中,4c2=4a2-(2+)PF1PF2, 在雙曲線中,4c2=4a+(2-)PF1PF2, 可得b=(7-4)b2,代入(*)得 c4=aa2=(c2-b)a2=(8-4)c2a2-(7-4)a4, 即e4-(8-4)e2+(7-4)=0, 得e2=7-4,即e=2-. 9.在平面直角坐標(biāo)系xOy中,點(diǎn)P為雙曲線x2-2y2=1的右支上的一個(gè)動(dòng)點(diǎn),若點(diǎn)P到直線x-2y+2=0的距離大于m恒成立,則實(shí)數(shù)m的最大值為________. 答案 解析 設(shè)點(diǎn)P(x,y),由題意得[]min>m,而直線x-2y+2=0與漸近線x-2y=0的距離為 =,因此[]min>,即m≤,實(shí)數(shù)m的最大值為. 10.已知橢圓C:+=1 (a>b>0)的左,右焦點(diǎn)分別為F1,F(xiàn)2,右頂點(diǎn)為A,上頂點(diǎn)為B.若橢圓C的中心到直線AB的距離為F1F2,則橢圓C的離心率e=______. 答案 解析 設(shè)橢圓C的焦距為2c (c0,b>0)的離心率為,拋物線y2=2px (p>0)的準(zhǔn)線與雙曲線C的漸近線交于A,B兩點(diǎn),△OAB(O為坐標(biāo)原點(diǎn))的面積為4,則拋物線的方程為__________. 答案 y2=8x 解析 ∵e==?c=a,∴b==a, ∴y=x=x, ∴S△AOB=p=4,∴p=4, ∴拋物線的標(biāo)準(zhǔn)方程是y2=8x. 12.已知F1,F(xiàn)2是雙曲線-=1(a>0,b>0)的兩個(gè)焦點(diǎn),以線段F1F2為邊作正三角形MF1F2,若邊MF1的中點(diǎn)P在雙曲線上,則雙曲線的離心率是________. 答案 +1 解析 因?yàn)镸F1的中點(diǎn)P在雙曲線上,PF2-PF1=2a, △MF1F2為正三角形,邊長(zhǎng)都是2c,所以c-c=2a, 所以e===+1. 13.已知點(diǎn)P在拋物線y2=4x上,當(dāng)點(diǎn)P到直線y=x+4的距離最短時(shí),點(diǎn)P的坐標(biāo)是________. 答案 (1,2) 解析 設(shè)P(,y),則點(diǎn)P到直線y=x+4的距離d==,當(dāng)y=2時(shí),d取得最小值.把y=2代入y2=4x,得x=1,所以點(diǎn)P的坐標(biāo)為(1,2). 14.已知點(diǎn)F1,F(xiàn)2分別為橢圓+=1的左,右焦點(diǎn),點(diǎn)M為橢圓上一點(diǎn),且△MF1F2內(nèi)切圓的周長(zhǎng)等于3π,若滿足條件的點(diǎn)M恰好有2個(gè),則a2=________. 答案 25 解析 由橢圓的對(duì)稱性,知滿足題意的點(diǎn)M是橢圓短軸的端點(diǎn), MF1=MF2=a.設(shè)內(nèi)切圓半徑為r, 則2πr=3π,r=,又(2a+2c)r=2c4,所以(a+)=4,解得a2=25.- 1.請(qǐng)仔細(xì)閱讀文檔,確保文檔完整性,對(duì)于不預(yù)覽、不比對(duì)內(nèi)容而直接下載帶來的問題本站不予受理。
- 2.下載的文檔,不會(huì)出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請(qǐng)點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國(guó)旗、國(guó)徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對(duì)作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 高考數(shù)學(xué)三輪增分練 高考小題分項(xiàng)練10 圓錐曲線 高考 數(shù)學(xué) 三輪 增分練 小題分項(xiàng)練 10
鏈接地址:http://m.jqnhouse.com/p-11843827.html