高中數學 2_2《超幾何分布》教案1 蘇教版選修2-31
《高中數學 2_2《超幾何分布》教案1 蘇教版選修2-31》由會員分享,可在線閱讀,更多相關《高中數學 2_2《超幾何分布》教案1 蘇教版選修2-31(2頁珍藏版)》請在裝配圖網上搜索。
超幾何分布 教學目標: 1、理解理解超幾何分布; 2、了解超幾何分布的應用. 教學重點: 1、理解理解超幾何分布; 2、了解超幾何分布的應用 教學過程 一、復習引入: 1.隨機變量:如果隨機試驗的結果可以用一個變量來表示,那么這樣的變量叫做隨機變量 隨機變量常用希臘字母ξ、η等表示 2. 離散型隨機變量: 隨機變量 只能取有限個數值 或可列無窮多個數值 則稱 為離散隨機變量,在高中階段我們只研究隨機變量 取有限個數值的情形. 3. 分布列:設離散型隨機變量ξ可能取得值為 x1,x2,…,x3,…, ξ取每一個值xi(i=1,2,…)的概率為,則稱表 ξ x1 x2 … xi … P P1 P2 … Pi … 為隨機變量ξ的概率分布,簡稱ξ的分布列 4. 分布列的兩個性質:任何隨機事件發(fā)生的概率都滿足:,并且不可能事件的概率為0,必然事件的概率為1.由此你可以得出離散型隨機變量的分布列都具有下面兩個性質: ⑴Pi≥0,i=1,2,…; ⑵P1+P2+…=1. 對于離散型隨機變量在某一范圍內取值的概率等于它取這個范圍內各個值的概率的和 即 5.二點分布:如果隨機變量X的分布列為: X 1 0 P p q 二、講解新課: 在產品質量的不放回抽檢中,若件產品中有件次品,抽檢件時所得次品數X=m 則.此時我們稱隨機變量X服從超幾何分布 1)超幾何分布的模型是不放回抽樣 2)超幾何分布中的參數是M,N,n 三、例子 例1.在一個口袋中裝有30個球,其中有10個紅球,其余為白球,這些球除顏色外完全相同.游戲者一次從中摸出5個球.摸到4個紅球就中一等獎,那么獲一等獎的概率是多少? 解:由題意可見此問題歸結為超幾何分布模型由上述公式得 例2.一批零件共100件,其中有5件次品.現在從中任取10件進行檢查,求取道次品件數的分布列. 解:由題意 X 0 1 2 3 4 5 P 0.58375 0.33939 0.07022 0.00638 0.00025 0.00001 課堂小節(jié):本節(jié)課學習了超幾何及其分布列- 配套講稿:
如PPT文件的首頁顯示word圖標,表示該PPT已包含配套word講稿。雙擊word圖標可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設計者僅對作品中獨創(chuàng)性部分享有著作權。
- 關 鍵 詞:
- 超幾何分布 高中數學 2_2超幾何分布教案1 蘇教版選修2-31 _2 幾何 分布 教案 蘇教版 選修 31
裝配圖網所有資源均是用戶自行上傳分享,僅供網友學習交流,未經上傳用戶書面授權,請勿作他用。
鏈接地址:http://m.jqnhouse.com/p-11969631.html