購買設計請充值后下載,,資源目錄下的文件所見即所得,都可以點開預覽,,資料完整,充值下載可得到資源目錄里的所有文件。。?!咀ⅰ浚篸wg后綴為CAD圖紙,doc,docx為WORD文檔,原稿無水印,可編輯。。。具體請見文件預覽,有不明白之處,可咨詢QQ:12401814
塔里木大學
畢業(yè)論文(設計)任務書
學院
機械電氣化工程學院
班級
機械設計12
學生姓名
陳斌
學號
6031208107
課題名稱
蘋果切片機的設計
起止時間
2011年 12月 1日——2012年5月 26日(共16周)
指導教師
王 偉
職稱
副教授
課題內容
設計棗樹起苗機,主要能完成蘋果夾緊、切片等功能。
1. 選擇動力形式,設計傳動裝置和工作裝置。
2. 繪制二維裝配圖和零件圖。
3. 對整機進行三維實體建模。
擬定工作進度(以周為單位)
第1-3周 查閱相關文獻,撰寫開題報告。
第4-6周 根據當地實際情況確定蘋果切片機的設計方案。
第7-9周 根據工作要求,計算并查閱相關手冊,選擇和設計各零部件。
第10周 運用AutoCAD軟件,繪制二維零件圖和裝配圖。
第11-12周 運用三維設計軟件完成整機各零部件的三維建模。
第13-14周 從工藝性能,經濟性能,實用性能等方面對產品進行綜合評價、校核、修正。
第15周 完成設計說明書。
第 16周 答辯。
主要參考文獻
[1] 黃桂琴, 瞿越, 朱鳳武. 人參切片機設計研究[J]. 吉林農業(yè)大學學報, 1996, (03)
[2] 戈振揚, 余揚. 脫水蜜菠蘿切片方法的研究[J]. 云南農業(yè)大學學報, 1990, (04)
[3] 謝中生.國外切片機發(fā)展述評.電子工業(yè)部第45研究所.1996.3
[4] 屠用利. 罐藏果蔬原料處理設備(三)[J]. 食品工業(yè), 1985, (02)
[5] 戈振揚. 菠蘿切片機[J]. 食品與機械, 1990, (04)
[6] 朱海強. QP—320型鮮姜切片機的研制[J]. 農機化, 2009, (03)
[7] 姜雪鷹,馮小氟. 計算機控制螺旋切片機的設計[J]. 機械設計與制造, 1995, (04)
[8] 李仕坦. 鮮菇切片機聞世[J]. 食用菌, 2003, (02)
[9] 手電動兩用蔬菜切絲切片機[J]. 農村新技術, 2010, (20)
[10] 毛瑞馥,陳正學. CP系列果蔬脆片加工設備簡介[J]. 食品工業(yè)科技, 1996, (04)
[11] 羅倉學, 楊秀芳, 劉萍. 凍干果蔬脆片制作工藝[J]. 應用科技, 1998, (10)
[12] 罐頭工業(yè)手冊(專業(yè)沒備與建廠設計) 1980 5第五分冊北京:中國輕工業(yè)出版社,1986
[13] 朱海強.QP—320型鮮姜切片機研制[J]. 特色農業(yè)化,2009,(3)
[14] 梁仁和.QP內圓切片機系統(tǒng)設計和實現.碩士學位論文,20071001
[15] 張瑋琪.切片機電氣故障的檢修與維護.電子工業(yè)專用設備.2004(8):69-71
[16] 羅懷民.微型PLc在切片機中的應用.電子工業(yè)專用設備.2005(126):61-63
[17] 王明權,郭強生,黃克飛.QP-509型自動內圓切片機.電子工業(yè)專用設備1994,23(3)
任務下達人(簽字)
同意按此計劃進行設計
年 月 日
任務接受人意見
任務接受人簽名
年 月 日
2012年6月
蘋果切片機的設計
陳斌 王偉
(塔里木大學機械電氣化工程學院, 阿拉爾 843300)
摘 要:蘋果的營養(yǎng)很豐富,它含有多種維生素和酸類物質,針對蘋果在的種植廣,產量大,設計了對于蘋果深加工的蘋果切片機。設計的旋切式蘋果切片機,主要是由電動機經V帶降速并傳遞給平帶動力,從而使平帶進行旋轉運動,使刀片對蘋果進行旋切。由齒條和彈簧的的配合使得刀片在切完一箱蘋果后,立即更換物料箱,并且壓緊物料進行切割,其特點是效率較高。
關鍵詞:蘋果;切片機;刀片;旋切式
中圖分類號: 文獻標識碼:A 文章編號:
- 5 -
0 引言
蘋果的營養(yǎng)很豐富,它含有多種維生素和酸類物質。1個蘋果中含有類黃酮約30毫克以上,蘋果中含有15%的碳水化合物及果膠,維生素A、C、E及鉀和抗氧化劑等含量也很豐富。1個蘋果(154g)膳食纖維5g,鉀170mg,鈣10mg,碳水化合物22g,磷10mg,Vc7.8g,Vb7.8g。蘋果中的含鈣量比一般水果豐富多,有助于代謝掉體內多余鹽分。蘋果酸可代謝熱量,防止下半身肥胖。至于可溶性纖維果膠,可解決便秘。果膠還能促進胃腸道中的鉛、汞、錳的排放,調節(jié)機體血糖水平,預防血糖的驟升驟降。
如今,的林果總面積已經突破1700萬畝,果品產量達600萬噸,蘋果更是占了很大的份量。但是,由于現在的蘋果銷售方式很大程度上還是以鮮果的方式銷售到各地,就導致很多時候蘋果沒能得到很好的儲存條件,而導致大量的蘋果腐爛,造成很大的經濟損失,這對蘋果產業(yè)的發(fā)展是及其不利的,所以,從國際和內地的蘋果產業(yè)發(fā)展態(tài)勢看,蘋果的加工深加工具有很廣闊的發(fā)展前景,大力發(fā)展蘋果深加工與綜合利用技術研究,深加工不僅僅延長了蘋果的儲存和銷售期,而且可以大大增加了產品的附加值,更主要的是豐富了食品的品種,能更好地滿足不同消費者的多元化的食品需求。蘋果深加工調整了產業(yè)結構、緩解了供需矛盾、節(jié)約了生產浪費、促進了人類飲食文明的進步??梢哉f深加工所占比例反映了一個國家或地區(qū)蘋果產業(yè)的成熟程度。大力發(fā)展?jié)饪s鮮果汁、飲料、果醬等蘋果加工技術,有助于提高蘋果的國際競爭力。
在蘋果深加工過程中,蘋果切片就是其中的一個關鍵的環(huán)節(jié),只有將蘋果片切到合適的厚度,才能在后面得加工過程中很好的提取出蘋果的營養(yǎng)成分,而且直接將蘋果切片進行儲存也能很好的留住蘋果的營養(yǎng)成分。在大批量生產蘋果切片的過程中,能保證切片質量和效率的切片機就顯得至關重要了。
因此本人對以前的切片機進行參考,進行改進,將其刀片改為旋切式的,提高機構的切片效率設計出此作品。
1 設計原理及機構
1.1 整體設計思路
本人設計的旋切式蘋果切片機,主要是由電動機經V帶降速并傳遞給平帶動力,從而使平帶進行旋轉運動,使刀片對蘋果進行旋切。由齒條和彈簧的的配合使得刀片在切完一箱蘋果后,立即更換物料箱,并且壓緊物料進行切割。通過平帶的傳動與切割,完成切片過程;同時使用齒條和彈簧使得壓緊元件能夠很好的壓緊,在即將切完時迅速的退出并且更換物料箱;至于刀片,將其用鉚釘釘入平帶中,物料箱固定在機架上的導軌上,隨著平帶的旋轉運動,刀片也跟著運動,同時,在平帶上安裝了8把刀片,設定的切削速度為1m/s,切削厚度為3mm,在保證了切片質量的同時,切削效率也是比較好的。
小平帶輪1——通過它的軸與V帶軸連接,為主動輪;機架2——通過它支撐與連接機架平臺,起到固定的作用; 機架平臺3——用來支撐物料箱上的導軌;平帶4——在上面安裝刀片,切片的同時也支撐物料;定位元件5——用電機控制它的運動情況,在切片的時候固定物料箱;壓緊輪6——用來壓緊平帶,保證平帶的強度;刀片7——用鉚釘鉚在平帶上,切片的元件;壓緊機構8——它與電機配合,用來壓緊物料;物料箱9——用來盛放物料的裝置;導軌10——設計在物料箱的兩側,正好架在機架平臺上;支撐板11——支撐平帶;大帶輪12——機構的從動部件;擋料板13——用來防止料亂飛;接料板14——接住出料。
1-小平帶輪 2-機架 3-機架平臺 4-平帶 5-定位元件 6-刀片7-壓緊機構 8-壓緊板 9-導軌 10-物料箱 11-支撐板 12-大平帶輪 13-擋料板 14-接料板
圖1-1 切片機示意圖
2 關鍵部件設計
2.1 平帶設計
首先平帶的材料選取為膠帆布平帶,這是由于帶輪的工作環(huán)境比較干燥,工作量比較小。至于帶輪,選取為普通的滾筒,由于其所要承受的載荷不是很大,因此滾筒的結構形式為輪輻式。
平帶及帶輪的機構示意圖
圖2-1 平帶及帶輪的示意圖
2.2 平帶上刀片的設計
因為根據設計要求,刀片既要一邊支撐物料,又要一邊切削。所以我將它與平帶設計在一起,隨著平帶的運動而運動。
同時考慮到箱子不能跟平帶一起運動,必須另外有裝置固定它,所以,我設計支架通過它支撐箱子,又為了避免妨礙刀片運動,就將刀片寬度設定為箱子寬度。考慮到平帶是圓周運動,因此我設計在每隔一定的距離安裝一把刀片,有效的利用圓周運動,大大的提高工作效率。由平帶的轉速、帶長和物料箱的長度決定每隔500mm安裝一把刀片,這樣在整個平帶上就有8把刀片,即在平帶運動一周的時間內,刀片切削8次。刀片的尺寸為寬300mm,長10mm,高3mm。,用鉚釘將刀片鉚上去。鉚釘的大小選?。翰捎贸令^的型式, 。同時,為防止平帶的強度由于有溝槽而降低,在平帶上裝有刀片的地方也鉚上薄鐵皮,能有效的減少因開有溝槽而造成的強度降低。
1-刀片 2-溝槽 3-平帶 4-鉚釘 5-鐵片
圖2-2 刀片示意圖
2.3 帶輪軸的設計
選擇軸的材料并確定許用應力:選用45號鋼正火處理,查得強度極限,得
其許用彎曲[
確定軸的直徑:按扭轉強度估算,取C=110,
考慮到軸上有鍵槽,將軸的直徑增大5%,則
這里d取30mm。軸的基本數據如下
此兩段軸主要是用于安裝軸承,主要按軸承內徑尺寸系列確定,初選軸承類型為深溝球軸承,型號為6306,內徑為30mm,外徑為72mm,寬度為19mm。
此段軸主要考慮軸上的鍵槽,查表取其數值為
軸的示意圖如下:
圖2-3 軸的示意圖
2.4 小V帶輪的設計
輪類零件(齒輪、帶輪、鏈輪及蝸輪等)的功能是在軸與軸之間傳遞動力和運動。
V帶輪的材料的選擇主要用鑄鐵HT150或HT200,本機構選用HT200,小V帶輪的直徑較小,在這里采用實心式。
輪槽的契角 ,節(jié)寬 ,槽間距 ,基準線上槽深 ,最小槽緣厚度 ,外徑 =105.5
其結構示意圖如下:
圖2-4 V帶小輪
2.5 大V帶輪的設計
V帶輪的材料的選擇主要用鑄鐵HT150或HT200,本機構選用HT200,大V帶輪的直徑大于300mm時,其帶輪結構采用輪輻式,
帶寬: 查表得A帶: f=9
輪槽的契角 ,節(jié)寬,槽間距,基準線上槽深 ,最小槽緣厚度 ,外徑 =320.5。
其結構示意圖如下:
圖2-5 V帶大輪示意圖
2.6 V帶的張緊
由于各種材質的V帶都不是完全的彈性體,因而V帶在張緊里的作用下,經過一定的時間運轉后,就會由于塑性變形而松弛,是張緊力減小,傳遞動力的能力降低。因此,帶傳動必須設計張緊裝置,最常見的有定期張緊和自動張緊兩類。由于本人設計與選用的V帶的中心距不可調,因此選用張緊輪裝置,張緊輪放在松邊的內側,是帶只手單向彎曲。同時,放置張緊輪時,使其盡量的靠近大帶輪,以免影響帶在小輪上的包角。張緊輪的輪槽與帶輪相同,且直徑小于小帶輪。
張緊輪定期張緊裝置的示意圖如下
1-小V帶輪 2-大V帶輪 3-V帶 4-張緊輪 5-張緊輪機架
圖2-6 V帶張緊裝置的示意圖
2.7 物料箱的選擇
根據設計的要求,物料箱兩旁裝有導軌,使得它能夠在有外力作用的時候能夠沿著導軌運動。根據物料蘋果的型狀大小,設計得出它的長為150mm,它的寬度為300mm,主要是因為設計與選用的平帶的帶寬為355mm;由于蘋果的平均直徑為70mm,物料箱中一般放有8個蘋果,物料箱的高度為100mm。2.8 壓緊機構的設計
為了使壓緊機構與刀片的密切配合,在切片的行程里緩慢的壓緊蘋果,并隨時調整距離,在即將切完時,能夠迅速的松開,以配合供給機構的送料,當更換完物料箱之后,又進入壓緊過程,使切片順利。為此,我選擇用電機和齒條的配合來壓緊, 由平帶的速度1m/s和平帶上的刀片數8把,得出壓緊機構以每秒6mm的速度向下運動,當壓緊機構向下運動了120mm時,此時,松開手動搖柄,這時機構依靠彈簧中的儲能向上彈,等另一物料箱到預定位置后,搖動搖柄,然后又一輪的壓緊行程開始。
壓緊機構的機構示意圖如下所示
1-壓料元件 2-螺栓 3-擋板 4-彈簧
5-保護桿 6-壓緊連桿 7-齒條
圖2-7 壓緊機構示意圖
壓料元件1——用彈性較大的材料制成,其底部粘貼一層橡皮,使得它在壓緊的過程中始終能緊密的貼著物料;螺栓2——將壓料元件1和桿6連接起來;擋板3——用螺栓將它固定在基架上;彈簧4——連接壓緊連桿6和擋板3,在壓緊連桿6向下運動,當碰到擋板3的時候,它開始儲能,最后利用彈簧的彈力使壓緊機構退出物料箱;保護桿5——它卡在機架中的槽中,使得壓緊機構不能做水平方向上的運動,只能上下運動;壓緊連桿6——用于連接和傳遞動力;齒條7——在連桿上加工出來的齒條,通過它與電機的配合運動來傳遞動力。
3 結論
(1)此切片機的效率是人工的5~6倍,能達到25~30個/分。
( 2)由于是用帶傳動進行旋切,所以對帶的壽命影響比較大,帶的磨損比較快。
4 參考文獻
[1] 徐灝.機械設計手冊第3卷.北京:機械工業(yè)出版社,1992年 21-235
[2] 戈振揚, 余揚. 脫水蜜菠蘿切片方法的研究[J]. 云南農業(yè)大學學報, 1990, (04)
[3] 謝中生.國外切片機發(fā)展述評.電子工業(yè)部第45研究所.1996.3
[4] 屠用利. 罐藏果蔬原料處理設備(三)[J]. 食品工業(yè), 1985, (02)
[5] 方大千.電動機速查速算手冊[M] .中國水利水電出版社 ,2004年 99-101
[6] 陳立周等﹒機械設計(原書第二版) [M] .北京:機械工業(yè)出版社,2002年 68-70
[7] 姜雪鷹,馮小氟. 計算機控制螺旋切片機的設計[J]. 機械設計與制造, 1995, (04)
[8] 李仕坦. 鮮菇切片機聞世[J]. 食用菌, 2003, (02)
[9] 手電動兩用蔬菜切絲切片機[J]. 農村新技術, 2010, (20)
[10] 王先逵﹒機械制造工藝學[M] . 機械工業(yè)出版社,2006年 26-28
Apple slice machine design
Chen Bin
( Tarim University mechanical electrical engineering college, xinjiang in843300.)
Abstract: Apple 's nutrition is very rich, it contains a variety of vitamins and acids, on Apple plantations in Xinjiang wide, large output, designed for apple deep processing apple slicer. Design of the rotary cutting type , Apple slicer, primarily by motor through V belt speed down and transferred to the flat belt flat belt driving, thereby allowing a rotational motion, so that the blade on the apple peeling. By a rack and spring makes the blade of the cut ends with a box of apple, the immediate replacement of the material box, and compress the material cutting, which is characterized by high efficiency.
Key words: Apple; slicer; blade; rotating cutting type
蘋果切片機設計的開題報告
1課題來源及研究的目的和意義
我國是世界最大的果品生產國家,其水果產量占世界總產量的13.4%,果園面積是全球果園面積的21%, 我國加入WTO之后,蘋果是為數不多的具有明顯國際競爭力的農產品之一,自1992年起我國蘋果的產量就居世界首位。2000年,我國蘋果的栽培面積達到225.4萬hm2,產量達到2043萬t,分別占世界總面積的40%和總產量的30%。近幾年,我國蘋果的總產量每年都維持在2200萬t左右,已成為我國北方蘋果產區(qū)經濟支柱,并在推進農業(yè)結構調整、增加農民收入及出口創(chuàng)匯等方面發(fā)揮著重要作用。但是,多年來賣果難一直是擺在我們面前的現實問題。與此同時,在一些大城市的超市里或水果市場上,進口蘋果的價格卻比國產蘋果的價格高出許多,而且銷路很好。 從國外蘋果與國內蘋果的優(yōu)勢對比中不難發(fā)現,解決我國蘋果價格低迷的出路在于對蘋果進行深加工。據調查,我國每年加工蘋果的份額不到總產量的6%。而國際上蘋果深加工產品占鮮果的比例,美國45%,阿根廷50%,德國高達75%以上。在鮮果總體產量供過于求的同時,果醬、果泥、果醋、果片等蘋果深加工食品仍有很大的市場空間。因此,蘋果加工產業(yè)有著巨大的發(fā)展?jié)摿Α?
過去,的林果雖然有名氣,但是量少、品種雜、種植分散。如今,的林果總面積已經突破1700萬畝,果品產量達600萬噸,蘋果更是占了很大的份量。但是,由于現在的蘋果銷售方式很大程度上還是以鮮果的方式銷售到各地,就導致很多時候蘋果沒能得到很好的儲存條件,而導致大量的蘋果腐爛,造成很大的經濟損失,這對蘋果產業(yè)的發(fā)展是及其不利的,所以,從國際和內地的蘋果產業(yè)發(fā)展態(tài)勢看,蘋果的加工深加工具有很廣闊的發(fā)展前景,大力發(fā)展蘋果深加工與綜合利用技術研究,深加工不僅僅延長了蘋果的儲存和銷售期,而且可以大大增加了產品的附加值,更主要的是豐富了食品的品種,能更好地滿足不同消費者的多元化的食品需求。蘋果深加工調整了產業(yè)結構、緩解了供需矛盾、節(jié)約了生產浪費、促進了人類飲食文明的進步。可以說深加工所占比例反映了一個國家或地區(qū)蘋果產業(yè)的成熟程度。大力發(fā)展?jié)饪s鮮果汁、飲料、果醬等蘋果加工技術,有助于提高蘋果的國際競爭力。
在蘋果深加工過程中,蘋果切片就是其中的一個關鍵的環(huán)節(jié),只有將蘋果片切到合適的厚度,才能在后面得加工過程中很好的提取出蘋果的營養(yǎng)成分,而且直接將蘋果切片進行儲存也能很好的留住蘋果的營養(yǎng)成分。在大批量生產蘋果切片的過程中,能保證切片質量和效率的切片機就顯得至關重要了。
2 課題所涉及的問題在國內外研究的現狀及分析
2.1國外的切片機發(fā)展狀況
國外的切片機技術始于六十年代,到七十年代已經發(fā)展成熟,八十年代中期,大部分切片機都可以加工125MM以上大直徑單晶,像瑞士的邁爾-布格耶斯公司的臥室內圓切片機,切割棒料直徑最大可以達到304.8mm。八十年代中后期的一兩年,切片技術發(fā)展到了鼎盛時期,相當多的多功能全自動切片機相繼商品化。從而誕生了世界上續(xù)道著名的切片機廠家,如瑞士AG公司的TS系列機、日本TOkyo Semisu 朱式會社的TSK系列機、ASM系列機、美國STC公司的STC系列機等,就切片機的結構而言,主軸以空氣軸承火滾動軸承為支撐方式的臥式和立式兩種。發(fā)展到現在就切片機的功能而言,已經相當齊全,而且復合化,切片方式也有很多種類。
目前,全球水果加工機械需求每年以5.3%的速度增長。美國擁有最大的水果加工設備生產商,其次是日本,其他的主要生產商則來自德國、意大利和中國,目前水果加工設備生產增長最快的是發(fā)展中國家和地區(qū)。
據了解,美國包裝工業(yè)總產值占國民經濟總產值的3%。其包裝機械最大使用行業(yè)是食品產業(yè),其次是飲料產業(yè)、家庭清潔用品與化妝品產業(yè)、醫(yī)藥用品及煙草業(yè)。在美國食品產業(yè)中,蔬菜和水果每年需要的食品機械所占比重最大,而美國進口的食品加工機械主要來自德國、墨西哥、加拿大和中國。
在俄羅斯,機械制造業(yè)遠遠滿足不了農產品加工和食品生產等行業(yè)的需求。據了解,俄羅斯水果加工機械的市場容量為每年20億美元至40億美元,但是俄羅斯的制造商只占有20%的份額,并且這些制造商主要生產半自動化的設備,目前還沒有能力去滿足俄羅斯食品生產加工行業(yè)的整體需求。
在亞洲,越南市場則對食品機械如食品切片機等成套加工設備的需求日益旺盛,尤其是在水果加工設備方面。越南出產豐富的熱帶水果,年產量達380多萬噸,但水果加工技術落后,致使出口仍以鮮果為主。
2.2國內的切片機發(fā)展狀況
我國的切片機技術始于其實年代初期,我國的切片機廣泛應用于蔬菜、中藥、凍肉等領域,其中土豆的應用最為顯著,目前我國的切片機主要方式有以下幾種:
1、 直線往復式切片機,直線往復式切片機的結構簡單,但效益低,因此它應用于工作要求不高,效率低得場合
2、 圓盤旋轉式切片機,圓盤旋轉式切片機的結構簡單也有較高的生產效益,因此它廣泛應用于各種場合。
3、 水槍式切片機,水槍式耗水量大,只能切出平直的片,因此它的應用不是十分廣泛。
4、 圓形切片機,圓形式切片機有很高的工作效率,但是結構復雜,設計比較困難,因此它應用于工作效率要求相當高的專業(yè)領域。
國內市場現在的切片機類型有輪轉切片機、振動切片機、立式薄片切片機、凍肉切片機、中藥切片機、木材切片機、果蔬切片機等等。
我國的切片研究開發(fā)方面雖然已經有30年的歷史,近幾年來切片機的研制發(fā)展也非常迅速,但是與發(fā)達國家相比目前仍有一段距離,研制切片機沒有得到大面積的推廣應用,雖然現在已經有很多的切片機生產廠家,但是我國的切片機方面仍然處于較低得發(fā)展水平。
2.3總結
隨著機械制造技術的不斷發(fā)展,現階段的切片機也已經比較成熟,現在在果蔬切片類比較流行的就是全自動多功能的切片機,其外形美觀、安全衛(wèi)生,不需換刀片,只需使用不同進料斗和點動倒順開關即可進行切片工作,切片厚度可以調節(jié)。但是這些切片機大多都適用于大型工廠等地方?;诙喙δ芮衅瑱C,此次設計的是針對中小型場合的離心式蘋果切片機,例如食堂、家庭等。
3 課題所涉及的要求及可行性分析
離心式蘋果切片機是針對中小型場合的,要求重量輕,成本低,工作時候噪音小,需要有較高的工作效率,切片均勻。
如今我國的林果業(yè)蓬勃發(fā)展,大量的水果已經不能再單一的靠鮮果銷售,而需要對水果進行加工處理,而在這隨著經濟的不斷發(fā)展,社會購買力的不斷提高,將會有更多的功能更齊全的果蔬切片機和其它處理設備研制出來,并迅速轉化為生產力,促使我國果蔬加工業(yè)蓬勃發(fā)展起來。這種適用于中小型場合的蘋果切片機將會有很大的市場。所以在現今的市場前景下,此種切片機的生產是可行的。
4 內容與思路
1、確定切片機的總體方案
2、根據實際要求合理選擇電動機
3、確定傳動方案并設計計算
4、選擇軸,并確定結構尺寸,校核強度
5、選擇軸承及校核
6、刀片設計
7、入料斗及葉輪設計
8、機架的選擇和設計
9、整個機體的設計
5 完成本課題的工作方案及進度計劃
第 1-2 周 查閱相關文獻和資料。
第 3 周 撰寫開題報告。
第 4-6 周 根據當地的實際情況確定蘋果切片機的設計方案。
第 7-9 周 根據工作要求,計算并查閱相關手冊,選擇和設計各零部件。
第 10 周 運用AutoCAD軟件,繪制二維零件圖和裝配圖。
第11-12周 運用三維設計軟件完成整機各零部件的三維建模。
第13-14周 從工藝性能,經濟性能,實用性能等方面對產品進行綜合評價、校核、修正。
第 15 周 完成設計說明書。
第 16 周 答辯。
6 主要參考文獻
[1] 黃桂琴, 瞿越, 朱鳳武. 人參切片機設計研究[J]. 吉林農業(yè)大學學報, 1996, (03)
[2] 戈振揚, 余揚. 脫水蜜菠蘿切片方法的研究[J]. 云南農業(yè)大學學報, 1990, (04)
[3] 謝中生.國外切片機發(fā)展述評.電子工業(yè)部第45研究所.1996.3
[4] 屠用利. 罐藏果蔬原料處理設備(三)[J]. 食品工業(yè), 1985, (02)
[5] 戈振揚. 菠蘿切片機[J]. 食品與機械, 1990, (04)
[6] 朱海強. QP—320型鮮姜切片機的研制[J]. 農機化, 2009, (03)
[7] 姜雪鷹,馮小氟. 計算機控制螺旋切片機的設計[J]. 機械設計與制造, 1995, (04)
[8] 李仕坦. 鮮菇切片機聞世[J]. 食用菌, 2003, (02)
[9] 手電動兩用蔬菜切絲切片機[J]. 農村新技術, 2010, (20)
[10] 毛瑞馥,陳正學. CP系列果蔬脆片加工設備簡介[J]. 食品工業(yè)科技, 1996, (04)
[11] 羅倉學, 楊秀芳, 劉萍. 凍干果蔬脆片制作工藝[J]. 應用科技, 1998, (10)
[12] 罐頭工業(yè)手冊(專業(yè)沒備與建廠設計) 1980 5第五分冊北京:中國輕工業(yè)出版社,1986
[13] 朱海強.QP—320型鮮姜切片機研制[J]. 特色農業(yè)化,2009,(3)
[14] 梁仁和.QP內圓切片機系統(tǒng)設計和實現.碩士學位論文,20071001
[15] 張瑋琪.切片機電氣故障的檢修與維護.電子工業(yè)專用設備.2004(8):69-71
[16] 羅懷民.微型PLc在切片機中的應用.電子工業(yè)專用設備.2005(126):61-63
[17] 王明權,郭強生,黃克飛.QP-509型自動內圓切片機.電子工業(yè)專用設備1994,23(3)
[18] 程玉來. 山楂切片機的研制. 農業(yè)工程學報. 1996.3
[19] 董淑炎. 蘋果小食品加工. 農產品加工.2011.9
[20] 何天明. 蘋果生產現狀的調查與思考.農墾科技.2011(4)
[21] 張國秀. 旋轉式切片機的改進及至于試驗材料.安徽農業(yè)科學.2010,38(4)
南華大學機械工程學院畢業(yè)設計(論文)
Study and Improvement for Slice Smoothness in Slicing Machine of Lotus Root
De-yong YANG ,Jian-ping HU , En-zhu WEI , Heng-qun LEI ,and Xiang-ci KONG
Key Laboratory of Modern Agricultural Equipment and Technology
Ministry of Education Jiangsu Province Jiangsu University . Zhenjiang .
Jiangsu Province .P.R.China212013
Tel.: +86-511-8;Fax:+86-511-8
yangdy@163.com
Jinhu Agricultural Mechanization Technology Extension Station . Jinhu county
Jiangsu Province .P.R.China 211600
Abstract: Concerning the problem of the low cutting quality and the bevel edge in the piece of lotus root, the reason was analyzed and the method of improvement was to reduce the force in the vertical direction of link to knife. 3D parts and assemblies of cutting mechanism in slicing machine of lotus were created under PRO/E circumstance. Based on virtual prototype technology, the kinematics and dynamics analysis of cutting mechanism was simulated with ADAMS software, the best slice of time that is 0.2s~0.3s was obtained,and the curve of the force in the vertical direction of link to knife was obtained. The vertical force of knife was changed according with the change of the offset distance of crank. Optimization results of the offest distance of crank showed the vertical force in slice time almost is zero when the offset distance of crank is -80mm. Tests show that relative error of thickness of slicing is less than 10% after improved design, which is able to fully meet the technical requirements.
Keywords: lotus root; cutting mechanism; smoothness; optimization
1 Introduction
China is a country of producing lotus toot, lotus root system of semi-finished products of domestic consumption and external demand for exports is relatively large. In order to improve efficiency, reduce labor intensity, the group work, drawing on the principle of the artificial slice based on the design and development of a new type of lotus root slice (Bi Wei and Hu Jianping, 2006). This new type of slice solved easily broken cutting, stick knives, hard to clean up and other issues, but the process appears less smooth cutting, and some have a problem of hypotenuse piece of root. In this paper, analyzing cutting through the course of slice knife, the reasons causing hypotenuse was found, and the corresponding improvement of methods was proposed and was verified by the experiments.
2 Structure of Cutting Mechanism of Slicing Machine
Cutting mechanism of the quality of slice lotus root is the core of the machine, the performance of its direct impact on the quality of slice. Virtual prototyping of cutting mechanism of slice lotus root (Fig.1) was built by using PRO/E, and mechanism diagram of the body is shown in Fig.2. Cutting principle of lotus slicer adopted in the cardiac type of slider-crank mechanism was to add materials inside, which can be stacked several lotus root, lotus root to rely on the upper part of the self and the lower part of the lotus press down, so that it arrives in the material under the surface of the baffle. While slider-crank mechanism was driven by motor, the knife installed on the slider cut lotus root. In the slice-cutting process it was found that parallelism of the surface at both ends of part of piece lotus was not enough, which can not meet the technical requirements for processing.
Fig.1 Virtual prototyping of cutting mechanism
Fig.2 Diagram of cutting mechanism
Study and improvement for slice smoothness in slicing machine of lotus root.
3 The Cause of the Bevel Edge
Uneven thickness and bevel edge of cutting were related with forces on the slice knife in the process of cutting. In accordance with cutting mechanism (Fig.2), without taking into account the friction and weight, the direction of force F of point C was along the link. Force F may be decomposed with a horizontal direction force component and a vertical direction force component. The horizontal force component pushed the knife moving for cutting, but the vertical force component caused the knife moving along the vertical direction. Because of the gap between the slider and the rail, the vertical force component made the blade deforming during the movement, and knife could not move along the horizontal direction to cut lotus root, which caused the emergence of bevel edge. Thus, to reduce or eliminate the vertical force component in the cutting-chip was key to solve the problem of bevel edge and improve the quality of cutting.
When crank speed was 69~90r/min, the horizontal and vertical direction of the force curve of point C connecting link and the blade hinge are shown in Fig.3 and Fig.4 respectively. As can be seen from the chart, with the crank speed improvement the horizontal and vertical direction of the force in point C also increased. The horizontal force changed relatively stable during 0s~0.2s, which was conducive to cutting lotus, but the vertical force increased gradually. The more the vertical force was, the more detrimental to the quality cutting.
Fig.3 Horizontal force of C
Fig.4 Vertical force of C
4 Simulation and Optimization
If improving flatness of the slicer, the structure was optimized to reduce the vertical force component, so as far as possible the level of cutting blade.
When crank speed was 60~90r/min the velocity curve and acceleration curve of the knife center of mass are shown in Fig.5 and Fig.6 respectively. According to the speed curve, the speed of the knife center of mass was relatively large in a period of 0.2s~0.3s. In accordance with the requirements that the knife should have a higher speed during cutting lotus, so this period time was more advantageous to cutting than other terms. According to acceleration curve. When calculates by one cycle, the acceleration value was relatively quite small in the period of time, 0.15s~0.3s compared with other time section. Which indicated that the change of velocity was relatively small, simultaneously the force of inertia was small, and the influence of vibration caused by the force was small to the slicer. Therefore,this period of time, 0.2s~0.3s, to cut root piece was advantageous in enhances the cutting quality of lotus root piece.
Fig.5 Velocity curve of center of mass of knife
Fig.6 Acceleration curve of center of mass of knife
Based on the above analysis, the vertical force component between link and the knife was the main reason for bevel edge. According to the characteristics of slider-crank mechanism, reducing the vertical force on the knife in the period of cutting time by altering crank offest was tried to enhance the quality of the cutting. When crank speed was 60r/min, the crank eccentricity was optimized. When the offest of the crank was 40mm, 20mm, 0mm, -20mm, -40mm, -80mm, -120mm respectively, the mechanism was simulated and the vertical force curves under different crank eccentricity were obtained, as shown in Fig.7.
Fig.7 vertical force curves in different offest
Fig.7 indicates that: When the eccentricity was positive, the vertical force on point C increased gradually in 0.2s~0.3s with the increase of crank oddest: When the eccentricity was negative, the force decreased gradually first and then begun to increase along with -80mm. So when the offest was -80mm, the numerical of the force in 0.2s~0.3s achieved the minimum and the quality of cutting was the best.
When the crank rotated in the other speed, there were the same optimization results. Fig.8 show the curve of vertical force in the offest of 0mm and -80mm when the speed of crank was 80r/min. From the Fig.8 it is obvious that vertical direction of the force of point C in 0.2s~0.3s reduced a lot when the eccentricity is -80mm. Therefore, the vertical force could be reduced by optimizing the slider-crank mechanism of eccentricity.
Fig.8 Vertical force of C
5 Experimental Analysis
The relative error of thickness of lotus root piece reflects the quality of cutting. Which is generally controlled of 10%. There always existed bevel edge phenomenon and the relative error of thickness was about 15% before structural optimization and improvement, which was difficult to meet the technical requirements. The offset in the slider-crank mechanism was optimized, and its structure was improved according to the results of optimization. After improvement cutting test were done in the conditions of crank speed for 80~110r/min and statistical data about the relative error of thickness was shown in Table.1. Four levels were separated in the experiment, three times for each level.
Table 1 Relative error of thickness of slicing
NO
Crank speed (r/min)
80
90
100
110
1
6.6%
6.4%
8.2%
9.5%
2
5.3%
6.1%
8.5%
9.2%
2
6.4%
7.9%
7.9%
9.4%
Average
6.1%
6.8%
8.2%
9.4%
It is derived from Table.1 that the relative error of the thickness of slices could meet the technical indicators when the crank speed was 80~110r/min, especially in the crank rotation speed 80r/min, 90r/min the relative error of thickness was less than 7%,and high quality was achieved.
6 Conclusion
The vertical force component acted on the knife in the process of cutting was the main reason for surface formation and bevel edge, so the key of improving the quality was to reduce the vertical force. Through slice knife and velocity acceleration simulation analysis the best time for slicing, 0.2s~0.3s, was obtained. By optimizing the offset of the crank the vertical force during cutting time was greatly reduced when the offset was -80mm. Experiments were made after improving the design of lotus root slicer, which results showed that by changing the offset of the crank, the relative error of the thickness could fully meet the requirements of less than 10%. So the problem was basically solved that the flatness was not ideal and was the issue of bevel edge.1
References
[1] Wei,B . jianping,H.: Study of lotus root slicing techniques and design of new model,Journal of agricultural mechanization research (12),112-114(2006)(in Chinese)
[2] Enzhu, w.:the simulation and optimization on the new slicing machine of lotus root based on virtual prototype technology .jiangsu university [2008)[in Chinese)
[3] Ce ,Z .:mechanical dynamics .higher education press[1999)
[4]Xiuning ,C.:optimal design of machinery .zhejiang university press[1999)
[5]Liping,C.,yunqing,Z.,weiqun,R.: dynamic analysis of mechanical systems and application Guide ADAMS . Tsinghua university press ,Beijing(2005)
Page 8 of 8