正多邊形和圓ppt課件
《正多邊形和圓ppt課件》由會(huì)員分享,可在線閱讀,更多相關(guān)《正多邊形和圓ppt課件(9頁珍藏版)》請?jiān)谘b配圖網(wǎng)上搜索。
24.3 正多邊形和圓,1,各邊相等,各角也相等的多邊形叫做 正多邊形.,三條邊相等,三個(gè)角相等(60度)。,四條邊相等,四個(gè)角相等(900)。,,正三角形,,正方形,一 .正多邊形定義,如果一個(gè)正多邊形有n條邊,那么這個(gè)正多邊形 叫做正n邊形。,思考: 菱形是正多邊形嗎?矩形是正多邊形呢?,,,菱形, 矩形都不是正多邊形,2,,,,3.正多邊形都是軸對稱圖形,一個(gè)正n邊形共有n 條對稱軸。,,,正多邊形的性質(zhì)及對稱性,4. 邊數(shù)是偶數(shù)的正多邊形還是中心對稱圖形, 它的中心就是對稱中心。,1、正多邊形的各邊相等,2、正多邊形的各角相等,3,正n邊形與圓的關(guān)系,1.把正n邊形的邊數(shù)無限增多,就接近于圓.,,A,B,C,D,,,,,,,,,思考: 把一個(gè)圓4等分, 并依次連 接這些點(diǎn),得到正多邊形嗎??,弧相等,弦相等,圓的內(nèi)接正四邊形,→,角相等,4,思考2: 把一個(gè)圓5等分, 并依次連接這些點(diǎn), 得到正多邊形嗎??,證明:∵AB=BC=CD=DE=EA,,,A,B,C,D,E,,⌒,⌒,⌒,⌒,⌒,∴AB=BC=CD=DE=EA,∵BCE=CDA=3AB,⌒,,,∴∠A=∠B,同理∠B=∠C=∠D=∠E,∴∠A=∠B=∠C=∠D=∠E,又∵頂點(diǎn)A、B、C、D、E都在⊙O上,∴五邊形ABCDE是⊙O的 內(nèi)接正五邊形. ⊙O是正五邊形ABCDE的外接圓。,定義:把圓分成n(n≥3)等份: 依次連結(jié)各分點(diǎn)所得的多邊形是這個(gè)圓 的內(nèi)接正多邊形.,5,.,O,,中心角,半徑R,,,,邊心距r,正多邊形的中心: 一個(gè)正多邊形的 外接圓的圓心.,正多邊形的半徑: 外接圓的半徑,正多邊形的中心角: 正多邊形的每一條 邊所對的圓心角.,正多邊形的邊心距: 中心到正多邊形的 一邊的距離.,二. 正多邊形有關(guān)的概念,,,,A,B,6,.,O,,中心角,半徑R,,,,正多邊形的內(nèi)角:,正多邊形的中心角:,則正多邊形的邊心距:,三. 正多邊形有關(guān)的計(jì)算,,,,A,B,,,正多邊形的面積:,邊心距r,正多邊形的外接圓的半徑為R,正多邊形的邊長為a,,(L:多邊形周長 r:邊心距),7,例 有一個(gè)亭子它的地基是半徑為4m的正六邊形, 求地基的周長和面積(精確到0.1平方米).,.,O,B,C,,,,,,r,R,P,8,∴亭子的周長 L=6×4=24(m),.,O,B,C,,,,,,r,R=4,P,9,- 1.請仔細(xì)閱讀文檔,確保文檔完整性,對于不預(yù)覽、不比對內(nèi)容而直接下載帶來的問題本站不予受理。
- 2.下載的文檔,不會(huì)出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
20 積分
下載 |
- 配套講稿:
如PPT文件的首頁顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 正多邊形 ppt 課件
鏈接地址:http://m.jqnhouse.com/p-1538630.html