基于單片機(jī)的蓄電池容量檢測(cè)系統(tǒng)的設(shè)計(jì)【含程序、電路圖】
基于單片機(jī)的蓄電池容量檢測(cè)系統(tǒng)的設(shè)計(jì)【含程序、電路圖】,含程序、電路圖,基于,單片機(jī),蓄電池,容量,檢測(cè),系統(tǒng),設(shè)計(jì),程序,電路圖
畢 業(yè) 設(shè) 計(jì)(論 文)任 務(wù) 書(shū)
??
設(shè)計(jì)(論文)題目:
基于單片機(jī)的蓄電池容量檢測(cè)系統(tǒng)的設(shè)計(jì)
?
學(xué)生姓名:
專(zhuān)????業(yè):
所在學(xué)院:
指導(dǎo)教師:
職????稱(chēng):
發(fā)任務(wù)書(shū)日期:年月日
任務(wù)書(shū)填寫(xiě)要求
1.畢業(yè)設(shè)計(jì)(論文)任務(wù)書(shū)由指導(dǎo)教師根據(jù)各課題的具體情況填寫(xiě),經(jīng)學(xué)生所在專(zhuān)業(yè)的負(fù)責(zé)人審查、系(院)領(lǐng)導(dǎo)簽字后生效。此任務(wù)書(shū)應(yīng)在畢業(yè)設(shè)計(jì)(論文)開(kāi)始前一周內(nèi)填好并發(fā)給學(xué)生。
2.任務(wù)書(shū)內(nèi)容必須用黑墨水筆工整書(shū)寫(xiě),不得涂改或潦草書(shū)寫(xiě);或者按教務(wù)處統(tǒng)一設(shè)計(jì)的電子文檔標(biāo)準(zhǔn)格式(可從教務(wù)處網(wǎng)頁(yè)上下載)打印,要求正文小4號(hào)宋體,1.5倍行距,禁止打印在其它紙上剪貼。
3.任務(wù)書(shū)內(nèi)填寫(xiě)的內(nèi)容,必須和學(xué)生畢業(yè)設(shè)計(jì)(論文)完成的情況相一致,若有變更,應(yīng)當(dāng)經(jīng)過(guò)所在專(zhuān)業(yè)及系(院)主管領(lǐng)導(dǎo)審批后方可重新填寫(xiě)。
4.任務(wù)書(shū)內(nèi)有關(guān)“學(xué)院”、“專(zhuān)業(yè)”等名稱(chēng)的填寫(xiě),應(yīng)寫(xiě)中文全稱(chēng),不能寫(xiě)數(shù)字代碼。學(xué)生的“學(xué)號(hào)”要寫(xiě)全號(hào),不能只寫(xiě)最后2位或1位數(shù)字。
5.任務(wù)書(shū)內(nèi)“主要參考文獻(xiàn)”的填寫(xiě),應(yīng)按照《金陵科技學(xué)院本科畢業(yè)設(shè)計(jì)(論文)撰寫(xiě)規(guī)范》的要求書(shū)寫(xiě)。
?6.有關(guān)年月日等日期的填寫(xiě),應(yīng)當(dāng)按照國(guó)標(biāo)GB/T 7408—94《數(shù)據(jù)元和交換格式、信息交換、日期和時(shí)間表示法》規(guī)定的要求,一律用阿拉伯?dāng)?shù)字書(shū)寫(xiě)。如“2002年4月2日”或“2002-04-02”。
畢 業(yè) 設(shè) 計(jì)(論 文)任 務(wù) 書(shū)
1.本畢業(yè)設(shè)計(jì)(論文)課題應(yīng)達(dá)到的目的:
?
通過(guò)畢業(yè)設(shè)計(jì),使學(xué)生受到電氣工程師所必備的綜合訓(xùn)練,在不同程度上提高各種設(shè)計(jì)及應(yīng)用能力,具體包括以下幾方面:
1. 調(diào)查研究、中外文獻(xiàn)檢索與閱讀的能力。
2. 綜合運(yùn)用專(zhuān)業(yè)理論、知識(shí)分析解決實(shí)際問(wèn)題的能力。
3. 定性與定量相結(jié)合的獨(dú)立研究與論證的能力。
4. 實(shí)驗(yàn)方案的制定、儀器設(shè)備的選用、調(diào)試及實(shí)驗(yàn)數(shù)據(jù)的測(cè)試、采集與分析處理的能力。
5. 設(shè)計(jì)、計(jì)算與繪圖的能力,包括使用計(jì)算機(jī)的能力。
6. 邏輯思維與形象思維相結(jié)合的文字及口頭表達(dá)的能力。
2.本畢業(yè)設(shè)計(jì)(論文)課題任務(wù)的內(nèi)容和要求(包括原始數(shù)據(jù)、技術(shù)要求、工作要求等):
?
1. 本設(shè)計(jì)應(yīng)完成將單片機(jī)技術(shù)引入蓄電池容量檢測(cè)系統(tǒng)的設(shè)計(jì)之中,要求實(shí)現(xiàn)如下控制:1)能夠方便快速的測(cè)量出蓄電池的剩余電量,在測(cè)量過(guò)程中不會(huì)對(duì)蓄電池造成損壞;2)選擇傳感器作為控制系統(tǒng)的執(zhí)行機(jī)構(gòu),合理的編寫(xiě)程序,使之取得良好的控制效果;3)判斷出該蓄電池能否繼續(xù)在該電力系統(tǒng)中使用;4)檢測(cè)方法對(duì)系統(tǒng)產(chǎn)生的影響較小,且精確度較高。?
2.設(shè)計(jì)系統(tǒng)的硬件電路和軟件程序,包括詳細(xì)的硬件設(shè)備配置,系統(tǒng)連接,程序調(diào)試等詳細(xì)步驟;
3.最終完成一篇符合金陵科技學(xué)院畢業(yè)論文規(guī)范的系統(tǒng)技術(shù)文檔,包括各類(lèi)技術(shù)資料,電路圖紙,程序等;
4.系統(tǒng)要有實(shí)際的硬件展示,并能夠通電運(yùn)行;
5.本子系統(tǒng)要與整個(gè)系統(tǒng)能夠配合運(yùn)行;
6.能夠完成各項(xiàng)任務(wù),參加最后的畢業(yè)設(shè)計(jì)答辯。
畢 業(yè) 設(shè) 計(jì)(論 文)任 務(wù) 書(shū)
3.對(duì)本畢業(yè)設(shè)計(jì)(論文)課題成果的要求〔包括圖表、實(shí)物等硬件要求〕:
1.按期完成一篇符合金陵科技學(xué)院論文規(guī)范的畢業(yè)設(shè)計(jì)說(shuō)明書(shū)(畢業(yè)論文),能詳細(xì)說(shuō)明設(shè)計(jì)步驟和思路;
2.能有結(jié)構(gòu)完整,合理可靠的技術(shù)方案;
3.能有相應(yīng)的電氣部分硬件電路設(shè)計(jì)說(shuō)明;
4.有相應(yīng)的圖紙和技術(shù)參數(shù)說(shuō)明;
5.要求基于單片機(jī)的蓄電池容量檢測(cè)的系統(tǒng)能在實(shí)驗(yàn)室現(xiàn)有的設(shè)備基礎(chǔ)上調(diào)試成功,并在答辯時(shí)完成實(shí)際系統(tǒng)展示。
4.主要參考文獻(xiàn):
[1] 李廣弟等.單片機(jī)基礎(chǔ)[M].北京航空航天出版社,2001.
[2] 王東峰等.單片機(jī)C語(yǔ)言應(yīng)用100例[M].電子工業(yè)出版社,2009.
[3] 李平等.單片機(jī)入門(mén)與開(kāi)發(fā)[M].機(jī)械工業(yè)出版社,2008.
[4] 馬青玉.高壓蓄電池組的計(jì)算機(jī)檢測(cè)設(shè)計(jì)[J].電子工程師,2002.
[5] 鐘富昭等.8051單片機(jī)典型模塊設(shè)計(jì)與應(yīng)用[M].人民郵電出版社,2007.
[6] 陳海宴.51單片機(jī)原理及應(yīng)用[M].北京航空航天大學(xué)出版社,2010.
[7] 李朝青.單片機(jī)&DSP外圍數(shù)字IC技術(shù)手冊(cè)[M].北京:北京航空航天大學(xué)出版社,
2009.
[8] 龔運(yùn)新,羅慧敏,彭建軍.單片機(jī)接口C語(yǔ)言開(kāi)發(fā)技術(shù)[M].北京:清華大學(xué)出版社,2009.
[9] 陳杰.智能鉛酸蓄電池組性能的監(jiān)控系統(tǒng)[J].機(jī)電工程,1999.
[10] 朱松然.鉛蓄電池技術(shù)[M].北京:機(jī)械工業(yè)出版社,2008.
[11] 崔花.單片機(jī)實(shí)用技術(shù)[M].北京:清華大學(xué)出版社,2008.
[12] 徐新民.單片機(jī)原理及應(yīng)用[M].浙江:浙江大學(xué)出版社,2009.
[13] 劉守義等.單片機(jī)技術(shù)基礎(chǔ)[M].西安電子科技大學(xué)出版社,2007.
[14] 江思明.電路工程設(shè)計(jì)-Protel?99實(shí)例演練[M].北京:人民郵電出版社,2009.
[15] 馬淑華,王鳳文,張美金主編.?單片機(jī)原理與接口技術(shù)[M].北京:北京郵電大學(xué)出版社,2008.
畢 業(yè) 設(shè) 計(jì)(論 文)任 務(wù) 書(shū)
5.本畢業(yè)設(shè)計(jì)(論文)課題工作進(jìn)度計(jì)劃:
起 迄 日 期
工 作 內(nèi) 容
2016.11.04---2016.11.28
2016.11.29---2016.12.16
2016.12.17---2017.01.10
2017.02.25---2017.03.09
2017.03.09---2017.04.28
?
2017.04.29---2017.05.09
2017.05.09---2017.05.13
2017.05.14---2017.05.21
在畢業(yè)設(shè)計(jì)管理系統(tǒng)里選題
與指導(dǎo)教師共同確定畢業(yè)設(shè)計(jì)課題
查閱指導(dǎo)教師下發(fā)的任務(wù)書(shū),準(zhǔn)備開(kāi)題報(bào)告
提交開(kāi)題報(bào)告、外文參考資料及譯文、論文大綱
進(jìn)行畢業(yè)設(shè)計(jì)(論文),填寫(xiě)中期檢查表,提交論文草稿等
按照要求完成論文或設(shè)計(jì)說(shuō)明書(shū)等材料,提交論文定稿
教師評(píng)閱學(xué)生畢業(yè)設(shè)計(jì);學(xué)生準(zhǔn)備畢業(yè)設(shè)計(jì)答辯
參加畢業(yè)設(shè)計(jì)答辯,整理各項(xiàng)畢業(yè)設(shè)計(jì)材料并歸檔
所在專(zhuān)業(yè)審查意見(jiàn):
?通過(guò)?
負(fù)責(zé)人: ??????????? ?2017? 年??? 1 ?月???12 ?日
畢 業(yè) 設(shè) 計(jì)(論 文)開(kāi) 題 報(bào) 告
設(shè)計(jì)(論文)題目:
基于單片機(jī)的蓄電池容量檢測(cè)系統(tǒng)的設(shè)計(jì)
?
學(xué)生姓名:
專(zhuān)????業(yè):
所在學(xué)院:
指導(dǎo)教師:
職????稱(chēng):
?
?年? ?月??日 ?
開(kāi)題報(bào)告填寫(xiě)要求
?
1.開(kāi)題報(bào)告(含“文獻(xiàn)綜述”)作為畢業(yè)設(shè)計(jì)(論文)答辯委員會(huì)對(duì)學(xué)生答辯資格審查的依據(jù)材料之一。此報(bào)告應(yīng)在指導(dǎo)教師指導(dǎo)下,由學(xué)生在畢業(yè)設(shè)計(jì)(論文)工作前期內(nèi)完成,經(jīng)指導(dǎo)教師簽署意見(jiàn)及所在專(zhuān)業(yè)審查后生效;
2.開(kāi)題報(bào)告內(nèi)容必須用黑墨水筆工整書(shū)寫(xiě)或按教務(wù)處統(tǒng)一設(shè)計(jì)的電子文檔標(biāo)準(zhǔn)格式打印,禁止打印在其它紙上后剪貼,完成后應(yīng)及時(shí)交給指導(dǎo)教師簽署意見(jiàn);
3.“文獻(xiàn)綜述”應(yīng)按論文的框架成文,并直接書(shū)寫(xiě)(或打?。┰诒鹃_(kāi)題報(bào)告第一欄目?jī)?nèi),學(xué)生寫(xiě)文獻(xiàn)綜述的參考文獻(xiàn)應(yīng)不少于15篇(不包括辭典、手冊(cè));
4.有關(guān)年月日等日期的填寫(xiě),應(yīng)當(dāng)按照國(guó)標(biāo)GB/T 7408—94《數(shù)據(jù)元和交換格式、信息交換、日期和時(shí)間表示法》規(guī)定的要求,一律用阿拉伯?dāng)?shù)字書(shū)寫(xiě)。如“2004年4月26日”或“2004-04-26”。
5、開(kāi)題報(bào)告(文獻(xiàn)綜述)字體請(qǐng)按宋體、小四號(hào)書(shū)寫(xiě),行間距1.5倍。
?
畢 業(yè) 設(shè) 計(jì)(論文) 開(kāi) 題 報(bào) 告
1.結(jié)合畢業(yè)設(shè)計(jì)(論文)課題情況,根據(jù)所查閱的文獻(xiàn)資料,每人撰寫(xiě)不少于1000字左右的文獻(xiàn)綜述:
單片機(jī)又稱(chēng)單片微控制器,它不是完成某一個(gè)邏輯功能的芯片,而是把一個(gè)計(jì)算機(jī)系統(tǒng)集成到一個(gè)芯片上。相當(dāng)于一個(gè)微型的計(jì)算機(jī),和計(jì)算機(jī)相比,單片機(jī)只缺少了I/O設(shè)備。概括的講:一塊芯片就成了一臺(tái)計(jì)算機(jī)。它的體積小、質(zhì)量輕、價(jià)格便宜、為學(xué)習(xí)、應(yīng)用和開(kāi)發(fā)提供了便利條件。同時(shí),學(xué)習(xí)使用單片機(jī)是了解計(jì)算機(jī)原理與結(jié)構(gòu)的最佳選擇。
單片機(jī)的使用領(lǐng)域已十分廣泛,如智能儀表、實(shí)時(shí)工控、通訊設(shè)備、導(dǎo)航系統(tǒng)、家用電器等。各種產(chǎn)品一旦用上了單片機(jī),就能起到使產(chǎn)品升級(jí)換代的功效,常在產(chǎn)品名稱(chēng)前冠以形容詞——“智能型”,如智能型洗衣機(jī)等。
蓄電池是目前使用最廣泛的一種電源,它是將化學(xué)能直接轉(zhuǎn)換成電源的一種裝置。蓄電池通過(guò)可逆的化學(xué)反應(yīng)實(shí)現(xiàn)再充電。它的工作原理:充電時(shí)利用外部的電能使內(nèi)部活性物質(zhì)再生,把電能存儲(chǔ)為化學(xué)能,需要放電時(shí)再次把化學(xué)能轉(zhuǎn)換為電能輸出。蓄電池作為一種性能可靠且循環(huán)利用的化學(xué)電能,其價(jià)值也與日俱增,廣泛應(yīng)用在電力、交通、通信等部門(mén)的設(shè)備中,并成為其不可缺少的重要組成部分。蓄電池的容量也就成了重要問(wèn)題,因?yàn)樾铍姵氐娜萘看笮≈苯佑绊懻麄€(gè)供電系統(tǒng)的可靠性。
隨著經(jīng)濟(jì)的迅速發(fā)展,電力和通信系統(tǒng)在其中發(fā)揮著越來(lái)越重要的作用,由蓄電池組、充電浮充電裝置以及饋電支路開(kāi)關(guān)和熔斷器等組成的直流系統(tǒng)是發(fā)電廠、變電站和通信基站中的一個(gè)重要組成部分,它工作狀況的好壞直接影響到電力系統(tǒng)和通信系統(tǒng)中的信號(hào)裝置、繼電保護(hù)裝置和控制裝置等重要負(fù)載提供工作電源,其性能好壞直接關(guān)系到電力和通信系統(tǒng)的安全可靠性。因此,為了確保這些設(shè)備即使在交流電源全部中斷的情況下依舊能正常安全連續(xù)運(yùn)行,就必須保證蓄電池組的運(yùn)行狀態(tài)性能良好,在發(fā)生火電中斷時(shí)能夠有足夠的放電容量,所以重視和加強(qiáng)對(duì)蓄電池的維護(hù)工作,特別是對(duì)蓄電池實(shí)施監(jiān)測(cè)的意義重大。
如今,蓄電池組已經(jīng)是許多設(shè)備的動(dòng)力源或應(yīng)急電源,因此電池組的性能將直接關(guān)系到設(shè)備的正常運(yùn)行。為了提高蓄電池的使用壽命,保證其可靠運(yùn)行,需要經(jīng)常對(duì)蓄電池參數(shù)進(jìn)行嚴(yán)格測(cè)量,以確保蓄電池組處于最佳的工作狀況。以往,蓄電池參數(shù)的測(cè)量都是人工完成的。人工測(cè)量速度慢,測(cè)量精度不高,而且有害氣體影響人體健康。為減少工人的勞動(dòng)強(qiáng)度,保障測(cè)量人員身體健康,提高測(cè)量速度和測(cè)量精度,對(duì)蓄電池參數(shù)進(jìn)行自動(dòng)測(cè)量顯得尤為重要。在多個(gè)單體電池串聯(lián)組成的系統(tǒng)中,單個(gè)電池故障就會(huì)影響到整個(gè)系統(tǒng),因此要對(duì)電池的充電和放電過(guò)程進(jìn)行系統(tǒng)的檢測(cè),在線實(shí)時(shí)檢測(cè)蓄電池沖放電的每個(gè)階段的電池的電壓,電流,電池體的溫度等。及時(shí)找出損壞的和性能顯著降低的電池,可以提高整個(gè)電池系統(tǒng)的安全性和穩(wěn)定性。由于受環(huán)境限制,要求系統(tǒng)簡(jiǎn)小、實(shí)用,可以每個(gè)電池配備一個(gè)單獨(dú)的系統(tǒng),通過(guò)LCD顯示單獨(dú)的電壓和電流的變化,方便對(duì)單一電池進(jìn)行維修和日常的維護(hù)。
蓄電池監(jiān)測(cè)系統(tǒng)中,主要內(nèi)容是對(duì)單電池電壓的監(jiān)測(cè)。其中,關(guān)于溫度和電流的測(cè)量都屬常規(guī)測(cè)量,而且在這些方面的測(cè)量技術(shù)都已成熟。在電壓的測(cè)量方法上,對(duì)單個(gè)電壓量的測(cè)量方法非常簡(jiǎn)單。其中,最關(guān)鍵的是如何測(cè)量電池組中串聯(lián)在一起的單電池電壓。在解決如何測(cè)量單電池電壓?jiǎn)栴}上,人們進(jìn)行了大量的研究工作。有人提出用繼電器來(lái)切換電池組中的每只電池。用觸點(diǎn)式繼電器切換的缺點(diǎn)是:體積大、成本高、壽命短、速度慢,且其電壓值計(jì)算比較麻煩;有人提出另外一種方法:在多路輸入信號(hào)的選擇上采用模擬開(kāi)關(guān)進(jìn)行選通,在模擬信號(hào)的轉(zhuǎn)換上采用可編程定時(shí)器的V/F轉(zhuǎn)換器。其中,在解決輸入信號(hào)電壓高于芯片的最大工作電壓的問(wèn)題上存在技術(shù)難點(diǎn),且采用V/F轉(zhuǎn)換作為A/D轉(zhuǎn)換器。其缺點(diǎn)是響應(yīng)速度慢、在小信號(hào)范圍內(nèi)線性度差、精度低。關(guān)于在線測(cè)量單只電池電壓的方法,還有人提出用光電隔離器件和大電解電容器構(gòu)成采樣,保持電路來(lái)測(cè)量蓄電池組中單只電池電壓。此電路的缺點(diǎn)是:在A/D轉(zhuǎn)換過(guò)程中,電容上的電壓能發(fā)生變化,使其精度趨低,而且電容充放電時(shí)間及晶體管和隔離芯片等器件動(dòng)作延遲等因素,決定采樣時(shí)間長(zhǎng)等缺點(diǎn)。國(guó)內(nèi)研制并投產(chǎn)的ZXJ24/2-1型蓄電池組智能監(jiān)測(cè)儀,采用浮動(dòng)地技術(shù)測(cè)量蓄電池組中各單電池電壓,測(cè)量的參數(shù)還包括電池組電壓、2路電流、2路溫度。
參考文獻(xiàn):
[1] 李廣弟等.單片機(jī)基礎(chǔ)[M].北京航空航天出版社,2001.
[2] 王東峰等.單片機(jī)C語(yǔ)言應(yīng)用100例[M].電子工業(yè)出版社,2009.
[3] 李平等.單片機(jī)入門(mén)與開(kāi)發(fā)[M].機(jī)械工業(yè)出版社,2008.
[4] 馬青玉.高壓蓄電池組的計(jì)算機(jī)檢測(cè)設(shè)計(jì)[J].電子工程師,2002.
[5] 鐘富昭等.8051單片機(jī)典型模塊設(shè)計(jì)與應(yīng)用[M].人民郵電出版社,2007.
[6] 陳海宴.51單片機(jī)原理及應(yīng)用[M].北京航空航天大學(xué)出版社,2010.
[7] 李朝青.單片機(jī)&DSP外圍數(shù)字IC技術(shù)手冊(cè)[M].北京:北京航空航天大學(xué)出版社,2009.
[8] 龔運(yùn)新,羅慧敏,彭建軍.單片機(jī)接口C語(yǔ)言開(kāi)發(fā)技術(shù)[M].北京:清華大學(xué)出版社,2009.
[9] 陳杰.智能鉛酸蓄電池組性能的監(jiān)控系統(tǒng)[J].機(jī)電工程,1999.
[10] 朱松然.鉛蓄電池技術(shù)[M].北京:機(jī)械工業(yè)出版社,2008.
[11] 崔花.單片機(jī)實(shí)用技術(shù)[M].北京:清華大學(xué)出版社,2008.
[12] 徐新民.單片機(jī)原理及應(yīng)用[M].浙江:浙江大學(xué)出版社,2009.
[13] 劉守義等.單片機(jī)技術(shù)基礎(chǔ)[M].西安電子科技大學(xué)出版社,2007.
[14] 江思明.電路工程設(shè)計(jì)-Protel?99實(shí)例演練[M].北京:人民郵電出版社,2009.
[15] 馬淑華,王鳳文,張美金主編.?單片機(jī)原理與接口技術(shù)[M].北京:北京郵電大學(xué)出版社,2008.
[16] 張曉冬.蓄電池監(jiān)測(cè)系統(tǒng)的現(xiàn)狀及發(fā)展趨勢(shì)[J].農(nóng)機(jī)化研究,2002年8月,第3期
[17] 吳中明,吳昊.密封鉛酸蓄電池容量快速測(cè)試技術(shù)難點(diǎn)分析[J].通信電源技術(shù),2006,23(1).
[18] 閏新華.影響鉛酸蓄電池容量的因素[J].UPS應(yīng)用,2004,1(33).
[19] 尉廣軍,朱宇虹.采用集成運(yùn)算放大器構(gòu)成的蓄電池恒流放電電路[J].2004.
?
畢 業(yè) 設(shè) 計(jì)(論文) 開(kāi) 題 報(bào) 告
2.本課題要研究或解決的問(wèn)題和擬采用的研究手段(途徑):
本課題要研究或解決的問(wèn)題是:
1.如何對(duì)系統(tǒng)的硬件設(shè)備進(jìn)行選擇,如何對(duì)硬件電路進(jìn)行研究規(guī)劃;
2.在一定的基礎(chǔ)上,如何進(jìn)行軟件編程;
3.在完成上述兩個(gè)步驟后,還需考慮怎樣設(shè)計(jì)出整體的電路原理圖。
?
?
研究手段(途徑):
1.去圖書(shū)館查閱相關(guān)資料,經(jīng)過(guò)匯總,作為參考資料;
2.充分利用網(wǎng)絡(luò)資源,進(jìn)行相關(guān)信息的搜索;
3.以小組討論的形式展開(kāi)對(duì)課題的研究;
4.理論聯(lián)系實(shí)際,利用學(xué)校創(chuàng)新實(shí)驗(yàn)室中的設(shè)備進(jìn)行模擬仿真。
畢 業(yè) 設(shè) 計(jì)(論文) 開(kāi) 題 報(bào) 告
指導(dǎo)教師意見(jiàn):
1.對(duì)“文獻(xiàn)綜述”的評(píng)語(yǔ):
綜述內(nèi)容較為豐富,參考文獻(xiàn)合理,概括了基于單片機(jī)的蓄電池容量檢測(cè)系統(tǒng)所包含的研究?jī)?nèi)容的相關(guān)背景、基礎(chǔ)知識(shí)、歷史發(fā)展等,同時(shí)還對(duì)本課題所研究的任務(wù)進(jìn)行了一定的闡述,對(duì)本課題的研究有一定的指導(dǎo)意義。
?
?
?
?
2.對(duì)本課題的深度、廣度及工作量的意見(jiàn)和對(duì)設(shè)計(jì)(論文)結(jié)果的預(yù)測(cè):
??? 本課題難度適中,工作量適中,做完本課題應(yīng)該能出適當(dāng)?shù)脑O(shè)計(jì)程序和調(diào)試結(jié)果,并對(duì)蓄電池容量檢測(cè)系統(tǒng)的設(shè)計(jì)有一個(gè)完整、清晰的認(rèn)識(shí)。
?
?
?
?
3.是否同意開(kāi)題:√ 同意 □ 不同意
?
???????????????????????????????????? ??指導(dǎo)教師:??????????????
???????????????????????????????????????? 2017 年?? 03 月?? 03 日
所在專(zhuān)業(yè)審查意見(jiàn):
同意
???????????????????????????????????????? 負(fù)責(zé)人:??????????????
?????????????????????????????????????????? 2017 年??? 03 月?? 08 日
畢 業(yè) 設(shè) 計(jì)(論 文)外 文 參 考 資 料 及 譯 文
譯文題目: Microcontroller design battery capacity
detection system based on
基于單片機(jī)的蓄電池容量檢測(cè)系統(tǒng)的設(shè)計(jì)
學(xué)生姓名:
專(zhuān) 業(yè):
所在學(xué)院:
指導(dǎo)教師:
職 稱(chēng):
年 2月 23日
14
Analysis and Design of Storage Battery Charge/Discharge Equalization Management
This article introduces the design of storage batter charge/discharge equalization system of the electrical cars based on HT46R47. Because it becomes into one difficulty in the development of electrical cars that the characters of the battery decides the equalization of the battery electric quantity, so this system adopts the equalization management to the storage battery charge/discharge, adjusts the unsuited batteries (over charge/over discharge) in the initial adjustment process, and implements equalization in the later charge process. The system makes the use capacity and the cycle life of the storage battery fully enhance. At the same time, this charger adopts the SCM as the main control component, which has many advantages such as simple and credible circuit, short charge time, low power consumption, low use trouble rate and so on.
1. Introduction
Valve?control?of?lead-acid?batteries?as?a?backup?power?supply?has?been???widely???used???in???industrial???production,???transportation,???communications???and?military?areas.?How?to?efficient?management?these?batteries,?improve?the?reliability?of?backup?power?system?is?a?very?realistic?important?topic.?Therefore,?the?subject?is?based?on?single?chip?design?a?battery?performance?testing?system.?The?system?adopts?the?precise?resistance?and?battery?constitute?a?series?circuit,?using?ac?injection?method?to???inject???weak???battery???sine???wave???signal,???a???series???of???output???response???by???the?amplification,?amplitude?and?phase?detection,?AD?transform?and?acquisition,?and?then?based?on?the?measured?resistance?calculation?battery?voltage?board.?Test?results?show?that?the?method?can?be?used?effectively?as?lead-acid?battery?resistance?measurement,?the?measured?results?stable?and effective.
2. Equalization management of storage battery pile
The power supply management technology that takes the single battery as the power source such as mobile phone has been very perfect, but in the battery pile, the difference among single battery is always existent. In the cycle charge/discharge process of electrical car, because of the difference of the chemic component of various storage batteries and the difference of running history of the storage battery, the variance of various batteries will be further enlarged, which will induce the difference of charge/discharge final voltage of the storage battery under same charge/discharge condition. If the battery system runs under that situation and without management, the use life and system reliability of the storage battery will be influenced. To extend the use life of the battery pile, we must make all single storage batteries keep same discharge depth and adopt the method of equalization charge to solve this problem.
The battery equalization is to adopt difference current to different batteries (or battery piles) in the series-wound battery group. The current of every battery in the series-wound battery is generally same, so we must add extra components and circuits to realize battery equalization. When all batteries in the battery group fulfill following two conditions, they will realize battery equalization. First, if the capabilities of all batteries are same, they will realize battery equalization when they are in the relative charge state. The state of charge (SOC) is generally represented by the percent of current capability and rating capability, so the open circuit voltage (OCV) can be taken as a measurement standard of SOC. If all batteries in an inequality battery pile can achieve full capability (the equalization point) through difference charge, they can be implemented normal charge/discharge and need not any extra adjustment, and this sort of adjustment is one-off generally. Second, if the capabilities of various batteries are different, when SOC is same, they are thought as equalization. But SOC is a relative value, and the absolute value of every battery capability is different. To make SOC of the batteries with different capabilities same, the difference current must be used when implementing charge/discharge to the series-wound batteries every time.
The concrete scheme design includes following aspects.
(1) Shunt: The shunt doesn’t cut the work loop of the battery, and it is to add a bypass setting for every battery just like battery partner, and both combined characters is equal to the character of the single battery which has the mean quality in the battery pile.
(2) Feedback: The feedback transfers the warp energy among single batteries to the battery pile or some singe batteries in the pile through the energy convertor. Theoretically speaking, the feedback doesn’t consume energy and can realize dynamic equalization. Because the battery pile on the electrical care has large powers and the instantaneous current can achieve hundreds ampere and present double polarities change, so this equalizer adopts the method of shunt feedback under considering many factors such as feasibility, quality-price ratio, practicability and reliability.
(3) Dynamic: The dynamic equalization can realize the equalization of single voltage in the pile and timely keep close load degrees through the method of energy transform under the charge state, discharge state or the float state.
(4) Double directions: The double direction convertor is selected according to the possible current direction of the equalizer treatment energy, which can implement dynamic adjustment of the input and output direction.
(5) Class connection: Several single batteries are spaced between high voltage single battery and low voltage single battery in the pile, and many class connected convertors need working simultaneously when the energy is transferred from high voltage single battery to the low voltage single battery.
(6) Efficiency and safety: For the dynamic equalization, especially in the use discharge process, the heat consumption of the convertor comes from the energy of the battery pile, and because the single battery has low voltage, so the efficiency of the convertor is a design difficulty, which must adopt and refer new design technology of present power supply and circuit, and many general inspection functions such as parameter excessive warning and heat protection are necessary. Because the environment in the car is in the bump and shaking state, so the line matching technology and durance structure must be designed carefully, and the short circuit induced by the lead abrasion may produce hidden fire trouble independent of battery performance.
3. Design of equalization circuit
This equipment is composed by a set of four charging series-wound battery pile, four measurement control and equalization modules and Holtek SCM HT47R47.
Figure 1 is the circuit frame of the battery module composed by a battery and its corresponding measurement control and equalization modules.
3.1 Voltage measurement
For several series-wound storage batteries (four), in the problems measuring the voltage needed to be solved, the main problem is the voltage sharing the ground. Because the anode of the upper battery connects with the cathode of the lower battery, various batteries don’t share the ground when measuring. We can adopt the method of resistance sharing voltage to solve that problem. The principle of the method is seen in Figure 2. The method is to transform the voltage of B1 to U1, and transform the voltage of B1+B2 to U2, and transform the voltage of B1+B2+B3 to U3, and so on. So the U1, U2 and U3 produced by this method are signals sharing the ground, and the measurement is convenient.
3.2 Equalization process
The equalization circuit is composed by one switch pipe Q, one diode D and one inductance L (the measurement control and equalization module 4 has not his component). The connection mode is that after Q and D is parallel connected, they are connected with L in series, and then respectively connected with the anode and the cathode of the battery, where, the cathode of D connects the anode of the battery and L connects the cathode of the battery. In the automatic equalization equipment of series-wound storage battery pile, various equalization circuits are series-wound. When the battery voltage in the X’th module is the highest voltage, connect Q and cut other switches, and here, the inductance Lx-1 and Lx charge and Lx-1 receives the forward voltage Lx, and Lx receives the reverse voltage. When Q is cut, the inductance Lx-1 charges to the batteries of various modules through Dx-1, Dx-2… D1, and in the same way Lx charges to the corresponding batteries though Dx+1, Dx+2…, D4. When the difference of single battery voltage is less than certain value, all switch pipes will be cut and the equalization process stops.
The equalization equipment is composed by four lithium batteries in series, and the mean voltage of the battery pile is 4V, and the maximum voltage of single battery is 4.1V. Whether the battery pile is in the charge state, discharge state or float state, the voltage signals of various single batteries are collected by the voltage inspection circuit in time, and analyzed by the SCM HT46R47. Through the comparison of these voltage signals, we will find one circuit which can fulfill the condition, which voltage is the highest one, and exceeds the mean voltage value to 0.02V, and we suppose it is the second circuit. So HT46R47 sends instruction to other circuits, orders their corresponding switch pipe Q close and transfer a pulse signal with 20KHz and 50% void occupation ratio. But when the circuit with highest voltage is the first circuit or the fourth circuit, i.e. the circuit is in the port of the equalization circuit, so the void occupation ratio is less than 1/2, and under other situations, this value is less than 2/3. Q2 is connected or cut under the control of the pulse, and the energy is transferred from the battery with higher voltage to other batteries through the inductance. When the difference of the voltage of the second circuit battery with the mean voltage is less than 0.02V, Q2 cuts. If other circuit fulfills the condition here, it will control the switch pipe connect or close in this circuit, or else, cut all switch pipes, and the equalization circuit of the storage battery is in the awaiting state. The selection condition of the control switch is the voltage value is the highest voltage and exceeds the mean voltage value 0.02V, which can avoid energy consumption and low life of switch pipe because of repeated switching actions under the situation that the voltage value difference is very small. Figure 3 is the principle of charge/discharge.
The discharge process is similar with the charge process, and the HT46R47 deals with the collected voltage signals, and finds out the circuit which voltage is the highest one and exceeds the mean voltage 0.02V, and we suppose it is the third circuit, lead the switch Q3, and charge to L2 and L1, and make various batteries discharge under the situation keeping voltage close, and when the voltage can not fulfill the condition, Q3 cuts.
3.3 MCU main control module
The MCU main control module based on HT46R47 microprocessor is the control core. HT46R47 is the SCM with 8 digital high performance simply instruction set, and specially designed for the product which needs implementing A/D transformation. The clock of the system is produced by the crystal oscillator. This clock is divided into four clock cycles without superposition in the interior of the chip. One instruction cycle includes four system clock cycles. The reading and implementation of the instruction is completed through the assembly line mode which can implement instruction operation in one instruction cycle. Therefore, most instructions can be performed completely in one cycle. Figure 4 is the principle of HT46R47 oscillating circuit.
4. Conclusions
In this article, we design a sort of equalization manager, which can be used with charge management and discharge management at the same time, and they are independent each other, and the equalization manager can be started in any stage of charge/discharge. The equalization voltage management of charge/discharge enhances the coherence of the single battery, reduces the accumulated influences of disequilibrium factors, and better solves the problem of a great lot of battery discarding induced by hybrid series-wound batteries with differences in the electrical cars.
Figure 2. Principle of Voltage Measurement
Figure 3. Principle of Charge/Discharge
Figure 4. Principle of Oscillating Circuit
分析及蓄電池的設(shè)計(jì)充電/放電均衡管理
本文介紹了電動(dòng)汽車(chē)的存儲(chǔ)面糊充電/放電均衡系統(tǒng)的基礎(chǔ)上設(shè)計(jì)的HT46R47。因?yàn)樗兂蔀橐粋€(gè)困難的電氣車(chē)的發(fā)展,該電池的特征確定所述電池電量的均衡,所以本系統(tǒng)采用均衡管理向蓄電池充電/放電,(/過(guò)充過(guò)放)調(diào)整不適應(yīng)電池的初始調(diào)整在以后的充電過(guò)程的過(guò)程,并實(shí)現(xiàn)了均衡。該系統(tǒng)使得使用容量和循環(huán)壽命蓄電池的全面提升。與此同時(shí),該充電器采用單片機(jī)作為主控部件,它具有許多優(yōu)點(diǎn),如簡(jiǎn)單可靠的電路,充電時(shí)間短,功耗低,使用低
故障率等特點(diǎn)。
1. 引言
閥控鉛酸蓄電池作為后備電源已經(jīng)廣泛應(yīng)用于工業(yè)生產(chǎn),交通、通信和軍事領(lǐng)域。如何高效率管理這些蓄電池,提高后備電源系統(tǒng)的可靠性是一個(gè)很現(xiàn)實(shí)的重要課題。因此,本課題設(shè)計(jì)一基于單片機(jī)的蓄電池性能檢測(cè)系統(tǒng)。該系統(tǒng)采用精密電阻和電池構(gòu)成串聯(lián)電路,用交流注入法對(duì)蓄電池注入微弱正弦波信號(hào),通過(guò)對(duì)輸出響應(yīng)進(jìn)行一系列的放大、幅相檢測(cè)、AD?轉(zhuǎn)換和采集,然后根據(jù)測(cè)量到的電壓比來(lái)推算電池內(nèi)阻。試驗(yàn)結(jié)果表明:該方法能夠被有效地用于鉛酸電池內(nèi)阻測(cè)量,測(cè)量結(jié)果穩(wěn)定有效。
2.蓄電池堆的均衡管理
電源管理技術(shù),采用單個(gè)電池作為電源,如移動(dòng)電話(huà)已經(jīng)非常完美了,但是在電池堆,單體電池之間的差異總是存在的。在電氣車(chē)的周期充電/放電過(guò)程中由于各種蓄電池的化學(xué)成分和運(yùn)行蓄電池的歷史的差異,各種電池的方差將進(jìn)一步放大,這將引起的差充電/放電相同的充電/放電條件下的蓄電池的最終電壓。如果電池系統(tǒng),該系統(tǒng)的情況下,沒(méi)有管理運(yùn)行時(shí),蓄電池的使用壽命和系統(tǒng)的可靠性會(huì)受到影響。為了延長(zhǎng)電池堆的使用壽命,我們必須使所有的單蓄電池保持相同的放電深度,并采用均衡充電的解決這個(gè)問(wèn)題的方法。
電池均衡是采用差電流到不同的電池(或電池堆)串聯(lián)卷繞電池組中使用。在串聯(lián)的電池每電池的電流一般一樣的,所以我們必須增加額外的元件和電路來(lái)實(shí)現(xiàn)電池均衡。當(dāng)電池組中的所有電池滿(mǎn)足以下兩個(gè)條件,他們將實(shí)現(xiàn)電池均衡。首先,如果所有電池的能力是相同的,它們將實(shí)現(xiàn)的電池均衡時(shí),他們中的相對(duì)充電狀態(tài)。的充電率(SOC)的狀態(tài)通常通過(guò)電流能力和分級(jí)能力的百分比表示,因此開(kāi)路電壓(OCV)可作為SOC的測(cè)量標(biāo)準(zhǔn)。如果在不等式電池堆的所有電池可以通過(guò)差分電荷達(dá)到滿(mǎn)容量(均衡點(diǎn)),它們可以被實(shí)現(xiàn)正常充電/放電,并且不需要任何額外的調(diào)整,并且這種調(diào)整是一次性的通常。第二,如果各電池的能力是不同的,當(dāng)SOC為相同,它們被認(rèn)為是均衡。但是SOC為一個(gè)相對(duì)值,和每一個(gè)電池能力的絕對(duì)值是不同的。為了使具有相同功能的不同電池的SOC,必須每次執(zhí)行充電/放電的串聯(lián)的電池時(shí)使用的差電流。
具體方案設(shè)計(jì)包括以下幾個(gè)方面。
(1)分流:分流不切割電池的工作循環(huán),并且它是增加一個(gè)旁路設(shè)置為每一個(gè)電池一樣電池伙伴,并且兩個(gè)組合字符是等于它具有單電池的字符指的是在電池堆的質(zhì)量。
(2)反饋:反饋單傳送到電池在電池堆或通過(guò)能量轉(zhuǎn)換器在一堆一些燒毛電池中經(jīng)能量。從理論上講,反饋不消耗能量,并且可以實(shí)現(xiàn)動(dòng)態(tài)均衡。因?yàn)殡姵囟训碾姎庾o(hù)理有很大的權(quán)力和瞬時(shí)電流可以達(dá)到數(shù)百安培和現(xiàn)在的雙極性改變,所以這個(gè)均衡器采用下考慮許多因素,如可行性,質(zhì)量?jī)r(jià)格比,實(shí)用性和可靠性的并聯(lián)反饋的方法。
(3)動(dòng)態(tài):動(dòng)態(tài)均衡可以實(shí)現(xiàn)在一堆單體電壓的均衡和及時(shí)通過(guò)節(jié)能的方式保持密切的負(fù)載程度的充電狀態(tài)下變換,放電狀態(tài)或浮動(dòng)狀態(tài)。
(4)雙方向:雙方向轉(zhuǎn)換根據(jù)均衡器治療能量,從而可以實(shí)現(xiàn)輸入和輸出方向的動(dòng)態(tài)調(diào)整的可能的電流方向地選擇。
(5)班的連接:有幾個(gè)單電池是在堆高電壓?jiǎn)误w電池和低電壓?jiǎn)坞姵刂g的間隔,而當(dāng)能量從高壓?jiǎn)误w電池轉(zhuǎn)移到低電壓?jiǎn)坞姵囟嗉?jí)連接轉(zhuǎn)換器需要同時(shí)工作。
(6)的效率和安全性:對(duì)于動(dòng)態(tài)均衡,特別是在利用放電過(guò)程中,轉(zhuǎn)換器的熱量消耗來(lái)自電池堆的能量,而且由于單電池具有低電壓,所以變換器的效率是一個(gè)設(shè)計(jì)難度,必須采用并參照目前的電源和電路,以及許多一般檢查職能的新的設(shè)計(jì)技術(shù),如參數(shù)過(guò)多的警告,過(guò)熱保護(hù)是必要的。因?yàn)樵谄?chē)環(huán)境中的顛簸和搖晃狀態(tài),所以該行的匹配技術(shù)和耐力的結(jié)構(gòu)必須精心設(shè)計(jì),以及由鉛磨損引起的短路可能會(huì)產(chǎn)生火災(zāi)隱患麻煩獨(dú)立的電池性能。
3. 均衡電路的設(shè)計(jì)
該設(shè)備是由一組四個(gè)充電串聯(lián)的電池堆,四個(gè)測(cè)量控制和均衡模塊,盛群?jiǎn)纹瑱C(jī)HT47R47組成。
圖1是由電池和其相應(yīng)的測(cè)量控制和均衡模塊構(gòu)成的電池模塊的電路框。
3.1電壓測(cè)量
幾個(gè)串聯(lián)的蓄電池(4件),在該問(wèn)題的測(cè)量需要解決的電壓時(shí),主要的問(wèn)題是電壓共用地面。由于上部電池的陽(yáng)極與下部電池的陰極連接,當(dāng)測(cè)量各個(gè)電池不共享地面。我們可以采用電阻分擔(dān)的電壓的方法來(lái)解決這個(gè)問(wèn)題。該方法的原理被認(rèn)為是在圖2的方法,是將變換的電壓B1的到U1,并且變換B1 + B2到U2的電壓,并變換B1的電壓+ B2 + B3至U3,等。所以通過(guò)這種方法生產(chǎn)的U1,U2和U3的是信號(hào)共享接地,并且測(cè)量是方便的。
3.2均等化處理
均衡電路由一個(gè)開(kāi)關(guān)管Q,一個(gè)二極管D.和一個(gè)電感L組成(測(cè)量控制和均衡模塊4還沒(méi)有自己的組件)。連接方式是,Q和D被并聯(lián)連接后,它們被以L串聯(lián)分別連接,然后與陽(yáng)極和電池,其中,D的陰極連接所述電池和L所連接的陽(yáng)極的陰極連接電池的陰極。在串勵(lì)蓄電池堆的自動(dòng)均衡設(shè)備,各種均衡電路是串聯(lián)的。當(dāng)?shù)赬個(gè)模塊中的電池電壓是最高電壓,連接Q和切割其他交換機(jī),并在這里,電感LX-1和Lx的充電??和LX-1接收正向電壓LX和Lx的接收反向電壓。當(dāng)Q被切斷,電感LX-1充電到各種模塊的電池通過(guò)DX-1,DX-2 ... D1,并以相同的方式Lx的收費(fèi),以相應(yīng)的電池雖然霉素+ 1,霉素+ 2 ...,D4 。當(dāng)單電池的電壓的差小于一定值時(shí),所有的開(kāi)關(guān)管將被切開(kāi)和均衡過(guò)程停止。
均衡設(shè)備由四個(gè)鋰蓄電池串聯(lián)組成,且電池堆的平均電壓為4V,并且單電池的最大電壓為4.1V。是否在電池堆是在充電狀態(tài),放電狀態(tài)或浮動(dòng)狀態(tài),各種單電池的電壓信號(hào)在時(shí)刻由電壓檢測(cè)電路收集,并且由單片機(jī)HT46R47進(jìn)行分析。通過(guò)這些電壓信號(hào)的比較,我們會(huì)發(fā)現(xiàn)一個(gè)電路能夠滿(mǎn)足的條件,該電壓是最高的一個(gè),并超過(guò)平均電壓值0.02V,我們假設(shè)它是第二電路。所以HT46R47發(fā)送指令到其它電路,下令其相應(yīng)的開(kāi)關(guān)管Q附近,并與20KHz的和50%的空隙占有率傳送的脈沖信號(hào)。但是,當(dāng)與最高電壓的電路是第一電路或第四電路,即該電路是在均衡電路的端口,所以空隙占用比小于1/2,而根據(jù)其他情況下,此值小于2/3。 Q2連接或脈沖的控制下切,能量從電池電壓較高通過(guò)電感轉(zhuǎn)移到其他電池。當(dāng)?shù)诙娐冯姵嘏c平均電壓的電壓的差小于0.02V,Q2削減。如果其他電路這里滿(mǎn)足條件,將控制開(kāi)關(guān)管連接或接近在該電路中,否則,切所有開(kāi)關(guān)管,與蓄電池的均衡電路是在等待狀態(tài)。控制開(kāi)關(guān)的選擇條件是電壓值最高電壓并超過(guò)平均電壓值0.02V,這可避免能量消耗和因?yàn)榍闆r下重復(fù)開(kāi)關(guān)動(dòng)作的開(kāi)關(guān)管的壽命低的電壓值的差非常小。圖3是充電/放電的原理。
放電過(guò)程是與充電過(guò)程相似,用所收集的電壓信號(hào)的HT46R47交易,并找出該電壓是最高的一個(gè),超過(guò)平均電壓0.02V的電路,并且我們假定它是第三電路,導(dǎo)致該開(kāi)關(guān)Q3和充電到L2和L1,并且使各電池的狀況維持電壓接近下放電,并且當(dāng)電壓不能滿(mǎn)足條件,Q3削減。
3.3 MCU主控模塊
基于HT46R47微處理器MCU主控模塊為控制核心。 HT46R47是8個(gè)數(shù)字高性能的簡(jiǎn)單指令集單片機(jī),以及專(zhuān)為它需要實(shí)施A / D轉(zhuǎn)換的產(chǎn)品而設(shè)計(jì)的。該系統(tǒng)的時(shí)鐘由晶體振蕩器產(chǎn)生的。這個(gè)時(shí)鐘是在芯片的內(nèi)部劃分為四個(gè)時(shí)鐘周期不疊加。一個(gè)指令周期包括四個(gè)系統(tǒng)時(shí)鐘周期。讀出和執(zhí)行該指令的,通過(guò)它可以在一個(gè)指令周期執(zhí)行指令操作的流水線模式完成。因此,大多數(shù)的指令可完全在一個(gè)周期進(jìn)行的。圖4是HT46R47振蕩電路的原理。
4.結(jié)論
在本文中,我們?cè)O(shè)計(jì)了一種均衡管理者的,它可以與收費(fèi)管理和放電管理的同時(shí)被使用,并且它們是相互獨(dú)立的,并均衡管理者可以在充電/放電的任何階段開(kāi)始。充電/放電均衡電壓管理提高單體電池的一致性,減少不平衡因素的累積影響,更好地解決了大很多,在電汽車(chē)的差異引起的混合串聯(lián)的電池電池丟棄的問(wèn)題。
圖1.電路框架電池模塊
圖2.電壓測(cè)量原理
圖3.充電/放電原理
圖4.振蕩電路的原理
收藏