設(shè)計(jì)-插秧機(jī)系統(tǒng)設(shè)計(jì)
設(shè)計(jì)-插秧機(jī)系統(tǒng)設(shè)計(jì),設(shè)計(jì),插秧機(jī),系統(tǒng)
外文翻譯
專 業(yè) 過程裝備與控制工程
學(xué)生姓名 于 亮 亮
班 級(jí) B裝備032班
學(xué) 號(hào) 0310140146
指導(dǎo)教師 咸 斌 .
旋風(fēng)分離器對(duì)稱蝸管進(jìn)口的實(shí)驗(yàn)室研發(fā)
Bingtao Zhao, Henggen Shen, Yanming Kang
翻譯:于亮亮
摘要:設(shè)計(jì)三種具有不同幾何形狀進(jìn)口的旋風(fēng)分離器,一種是傳統(tǒng)的單一切向進(jìn)口(CTSI),一種是對(duì)稱的直蝸管進(jìn)口(DSSI),還有一種是對(duì)稱的收斂蝸管進(jìn)口(CSSI)。進(jìn)口類型對(duì)旋風(fēng)分離器工作特性的效果,包括收集效率和壓降,本文研究并比較其與粒子大小和流速的關(guān)系。實(shí)驗(yàn)結(jié)果表明對(duì)稱的蝸管進(jìn)口(SSI),尤其是CSSI形狀進(jìn)口,隨著新增的可忽略壓降的條件下越來越多的對(duì)收集效率有重要的影響。另外,收集效率和壓降的研究結(jié)果也包括試驗(yàn)數(shù)據(jù)和理論模型之間的比較。
關(guān)鍵字:旋風(fēng)分離器;對(duì)稱的蝸管進(jìn)口;收集效率;壓降。
⒈介紹:
旋風(fēng)分離器廣泛應(yīng)用于空氣污染控制領(lǐng)域,為含懸浮微粒氣體進(jìn)行氣–固分離等工業(yè)應(yīng)用[1]。由于其制造簡(jiǎn)單,操作成本低,和對(duì)極端的苛刻條件的適應(yīng)性好,因此無論是應(yīng)用在工程上還是操作過程上旋風(fēng)分離器成為最主要的除塵裝置之一。然而,越來越多的提倡環(huán)境保護(hù),氣–固分離都強(qiáng)調(diào)應(yīng)該分離出最大量的微塵粒子。為達(dá)到這個(gè)要求,旋風(fēng)分離器幾何學(xué)和性能的改善要比替換可更換件來得重要。許多專家認(rèn)為擴(kuò)大旋風(fēng)室是提高旋風(fēng)分離器性能的主要因素,通過引進(jìn)新設(shè)計(jì)的進(jìn)口與操作變量。這包括對(duì)一臺(tái)分離試樣的旋風(fēng)分離器的裝有多個(gè)進(jìn)口葉片的分餾器的測(cè)試并結(jié)合其他的研究[2],德奧特建立一個(gè)數(shù)學(xué)模型來預(yù)算小型圓柱多諧振蕩器旋風(fēng)分離器的收集效率[3],穆爾和麥克法倫以萊普勒的典型幾何學(xué)為基準(zhǔn)測(cè)試一個(gè)有多個(gè)進(jìn)口的旋風(fēng)分離器[4],高塔姆和斯蒂納斯設(shè)計(jì)和測(cè)試一個(gè)可換氣的多進(jìn)口旋風(fēng)分離器取樣器的最小方向偏差[5],通過分離后的清潔空氣來比較一個(gè)雙進(jìn)口旋風(fēng)分離器的性能[6]。在本文中,介紹了一些形狀研究員設(shè)計(jì)的不同形狀進(jìn)口的新式進(jìn)口,和它們對(duì)旋風(fēng)分離器的性能效果的實(shí)驗(yàn)性研究。
⒉試驗(yàn)性的研究
三種具有不同幾何形狀進(jìn)口的旋風(fēng)分離器,包括傳統(tǒng)的單一切向進(jìn)口(CTSI),對(duì)稱的直蝸管進(jìn)口(DSSI),和對(duì)稱的收斂蝸管進(jìn)口(CSSI),已經(jīng)研制出了。它們的幾何形狀和尺寸見Fig1和Table⒈為了測(cè)試不同的進(jìn)口類型所帶來的效果,其它的尺寸設(shè)計(jì)完全相同,僅進(jìn)口的幾何形狀不同。
Fig.1 旋風(fēng)分離器形狀示意圖:(a) Model A 傳統(tǒng)的單一切向進(jìn)口 (b) Model B 對(duì)稱的收斂蝸管進(jìn)口 (c) Model C 對(duì)稱的收斂蝸管進(jìn)口。.
Table 1:旋風(fēng)分離器尺寸統(tǒng)計(jì):(單位mm)
Fig.2:試驗(yàn)結(jié)構(gòu)系統(tǒng)示意圖
圖⒉所示為實(shí)驗(yàn)系統(tǒng)機(jī)構(gòu)。 壓降是由接在旋風(fēng)分離器進(jìn)口和出口管的兩壓力計(jì)測(cè)量的。通過一數(shù)字微壓計(jì)(SINAP ,壓差1000-IIIC )讀得。收集效率是通過微顆粒大小分析器(SPSI,LKY -2)所得粒度分布計(jì)算的。由于Model B,C具有一樣對(duì)稱的進(jìn)口,所以組合式旋風(fēng)分離器各進(jìn)口的流速是相等的。并且流速可由閥來控制;運(yùn)行條件也相同,將濃度為5.0g/m3的粒子用雙噴管螺旋給料機(jī)喂到進(jìn)口管中。固體顆粒為滑石粉核心密度的2700kg/m3,按原標(biāo)準(zhǔn)尺寸分配,平均直徑的5.97Am,幾何偏差為2.08。在這次測(cè)試過程中平均大氣壓,環(huán)境溫度,和相對(duì)濕度分別是99.93kPa,293K,75%。
⒊結(jié)果和討論
3.1 收集效率
圖3顯示所測(cè)量的旋風(fēng)分離器總效率與流速或者進(jìn)口速度的關(guān)系。正如預(yù)料的那樣收集效率隨進(jìn)口速度的增加而增加。然而,Model B Model C兩旋風(fēng)分離器有著對(duì)稱的蝸管進(jìn)口,在同一進(jìn)口速度下,兩者的總效率永遠(yuǎn)要高于傳統(tǒng)的單一切向進(jìn)口旋風(fēng)分離器(Model A),特別是有CSSI的旋風(fēng)分離器(Model C)的總效率最高。在測(cè)試給定的相同速度條件下,通過改善進(jìn)口幾何形狀所帶來的旋風(fēng)分離器總效率的增加率分別為0.15–1.15%和0.40–2.40%。
圖4(a)–(d) 比較不同進(jìn)口類型的旋風(fēng)分離器的分級(jí)收集效率。在進(jìn)口速度分別為11.99,16.04,20.18,和23.85m/s時(shí)的流速分別為388.34,519.80,653.67,和772.62 m3/h??梢?旋風(fēng)分離器的摩擦效率隨粒子大小的增加而增加。所有旋風(fēng)分離器的分級(jí)收集效率曲線都呈S形。DSSI(Model b)和CSSI(Model c)旋風(fēng)分離器的摩擦效率分別比CTSI旋風(fēng)分離器(Model a)大2–10%,5–20%。這表明進(jìn)口的幾何形狀對(duì)旋風(fēng)分離器的收集效率有著重要的影響。進(jìn)入有對(duì)稱的蝸管進(jìn)口的旋風(fēng)分離器(Model B和C)的粒子容易聚集在旋風(fēng)分離器壁上,因?yàn)榱W又荒芤苿?dòng)很短的位移,尤其CSSI(Model C)改變了粒子分布濃度并使粒子在進(jìn)入旋風(fēng)分離器的筒體前就從氣體中分離了出來.圖5根據(jù)傳統(tǒng)的理論[7–11]比較了流速為653.67m3/h(進(jìn)口速度為20.18m/s)時(shí)的試驗(yàn)數(shù)據(jù)。很明顯,以Mothes /Loffler模型Iozia/ Leith 理論得出的效率曲線比其它的學(xué)說所得的曲線更符合試驗(yàn)結(jié)果。這些結(jié)果與研究進(jìn)行經(jīng)過Dirgo、Leith 和Xiang 等人的研究結(jié)果相吻合。
Fig.3 不同進(jìn)口速度下旋風(fēng)分離器的總效率
比較表明有些模型可以推斷一個(gè)還沒有公開的理論結(jié)果。但是現(xiàn)有的試驗(yàn)數(shù)據(jù)理論還不足以推斷出流態(tài)和粒子濃度分布的變化是對(duì)稱的蝸管進(jìn)口對(duì)旋風(fēng)分離器性能產(chǎn)生的效果。為了更清楚地驗(yàn)證對(duì)稱的蝸管進(jìn)口對(duì)旋風(fēng)分離器性能的作用效果,再看圖6,表示隨著流速或進(jìn)口速度的變化引起的各個(gè)模型的50%切截尺寸。在相同進(jìn)口速度下model c和model b的50%切截尺寸比model a要低。與進(jìn)口速度的減少一樣,50%切截尺寸也是近似呈線性減少的。例如,當(dāng)進(jìn)口速度為20.18m/s時(shí),50%切截尺寸的減少率由model b的9.88%和model c的24.62%決定。這表明新型進(jìn)口可以促進(jìn)旋風(fēng)分離器的收集效率。
3.2.壓降
旋風(fēng)分離器得壓差數(shù)值通常表示為一定數(shù)量的氣體入口速度壓頭高度差,用壓差數(shù)值系數(shù)表示,壓差數(shù)值系數(shù)是進(jìn)口動(dòng)壓壓差數(shù)值的分度。表2列出了在不同的入口速度時(shí)這三個(gè)旋風(fēng)分離器的壓差數(shù)值系數(shù)值。
顯然,旋風(fēng)分離器的壓降高低與流速高低有關(guān)。然而,一定流速或者入口速度下,A、B和C模式的壓力降系數(shù)有所不同,在5.21和5.76之間變化,其平均值為5.63。例如模式B在5.22–5.76之間變化,平均值為5.67;模式C在5.16–5.70之間變化平均值為5.55;模式A根據(jù)回歸分析計(jì)算。這是一個(gè)重點(diǎn),因?yàn)橛纱擞锌赡茉跊]有有效的壓差值增加的情況下提高氣旋收集效率。
表3列出了壓降的試驗(yàn)數(shù)據(jù)與電流理論的比較結(jié)果。結(jié)果顯示Alexander和Barth模式與試驗(yàn)數(shù)據(jù)最符合,盡管Shepherd ,Lapple 和Dirgo 氣旋模式推算也很出色。
Fig.4 不同進(jìn)口速度時(shí)的選粉效率等級(jí):(a)進(jìn)口速度為11.99 m/s (b)進(jìn)口速度為16.04 m/s (c) 進(jìn)口速度為20.18 m/s (d) 進(jìn)口速度為23.85 m/s.
Fig.5 試驗(yàn)所得效率等級(jí)與理論的比較 Fig.6 旋風(fēng)分離器的50%切截尺寸
Table 2 :旋風(fēng)分離器的壓力損失系數(shù):
Table 3 :與理論壓力損失系數(shù)比較:
4、結(jié)論
人們發(fā)明了一種具有對(duì)稱的蝸管進(jìn)口(SSI),DSSI和CSSI的新型旋風(fēng)分離器,并且測(cè)試和比較了這種進(jìn)口類型的旋風(fēng)分離器的性能。實(shí)驗(yàn)結(jié)果顯示這種DSSI旋風(fēng)分離器和CSSI旋風(fēng)分離器的總效率分別比CTSI旋風(fēng)分離器高出0.15–1.15%和0.40–2.40%。此外,DSSI旋風(fēng)分離器、CSSI旋風(fēng)分離器和CTSI旋風(fēng)分離器的壓力損失系數(shù)分別是5.63、5.67和5.55。盡管這些并聯(lián)進(jìn)口增加了旋風(fēng)分離器的復(fù)雜程度并加大了其成本,然而具有SSI尤其是CSSI的旋風(fēng)分離器具有更好的收集效率,而且顯著的減少了壓力損失。這篇文章介紹了借助于改進(jìn)進(jìn)氣道幾何形狀設(shè)計(jì)而改善旋風(fēng)分離器性能的可能性。
參考資料:
[1] Y.F. Zhu, K.W. Lee, Experimental study on small cyclones operating at high flow rates, Aerosol Sci. Technol. 30 (10) (1999) 1303– 1315.
[2] J.B. Wedding, M.A.Weigand, T.A. Carney, A 10 Am cut point inlet for the dichotomous sampl Environ.Sci.Technol. 16 (1982) 602– 606.
[3] R.E. DeOtte, A model for the prediction of the collection efficiency characteristics of a small, cylindrical aerosol sampling cyclone, Aerosol Sci. Technol. 12 (1990) 1055– 1066.
[4] M.E. Moore, A.R. Mcfarland, Design methodology for multiple inlet cyclones, Environ. Sci. Technol. 30 (1996) 271–276.
[5] M. Gautam, A. Streenath, Performance of a respirable multi-inlet cyclone sampler, J. Aerosol Sci. 28 (7) (1997) 1265– 1281.
[6] K.S. Lim, S.B. Kwon, K.W. Lee, Characteristics of the collection efficiency for a double inlet cyclone with clean air, J. Aerosol Sci. 34 (2003) 1085–1095.
[7] D. Leith, W. Licht, The collection efficiency of cyclone type particle collectors: a new theoretical approach, AIChE Symp. Ser. 68 (126) (1972) 196– 206.
[8] P.W. Dietz, Collection efficiency of cyclone separators, AIChE J. 27(6) (1981) 888– 892.
[9] H. Mothes, F. Loffler, Prediction of particle removal in cyclone separators, Int. Chem. Eng. 28 (2) (1988) 231– 240.
[10] D.L. Iozia, D. Leith, The logistic function and cyclone fractional efficiency, Aerosol Sci. Technol. 12 (1990) 598– 606.
[11] R. Clift, M. Ghadiri, A.C. Hoffman, A critique of two models for cyclone performance, AI ChE J. 37 (1991) 285–289.
[12] J. Dirgo, D. Leith, Cyclone collection efficiency: comparison of experimental results with theoretical predictions, Aerosol Sci. Technol. 4 (1985) 401–415.
[13] R.B. Xiang, S.H. Park, K.W. Lee, Effects of dimension on cyclone performance, J. Aerosol Sci. 32 (2001) 549– 561.
[14] C.B. Shepherd, C.E. Lapple, Flow pattern and pressure drop in cyclone dust collectors: cyclone without inlet vane, Ind. Eng. Chem. 32 (1940) 1246–1256.
[15] R.M. Alexander, Fundamentals of cyclone design and operation, Proc. Aust. Inst. Min. Met. (New Series) (1949) 152– 153, 202– 228.
[16] M.W. First, Cyclone dust collector design, Am. Soc. Mech. Eng. 49(A) (1949) 127–132.
[17] C.J. Stairmand, Design and performance of cyclone separators, Trans .Inst. Chem. Eng. 29 (1951) 356–383.
[18] W. Barth, Design and layout of the cyclone separator on the basis of new investigations, Brennst. Wa¨rme Kraft 8 (1956) 1 – 9.
[19] J. Casal, J.M. Martinez-Bennet, A batter way to calculate cyclone pressure drop, Chem. Eng. 90 (3) (1983) 99– 100.
[20] J. Dirgo, Relationship between cyclone dimensions and performance, Doctoral Thesis, Harvard University, USA, 1988.
6
收藏