2019-2020年高中數(shù)學(xué) 條件概率教案 新人教A版選修2-3.doc
《2019-2020年高中數(shù)學(xué) 條件概率教案 新人教A版選修2-3.doc》由會員分享,可在線閱讀,更多相關(guān)《2019-2020年高中數(shù)學(xué) 條件概率教案 新人教A版選修2-3.doc(3頁珍藏版)》請在裝配圖網(wǎng)上搜索。
2019-2020年高中數(shù)學(xué) 條件概率教案 新人教A版選修2-3 教學(xué)目標(biāo): 知識與技能:通過對具體情景的分析,了解條件概率的定義。 過程與方法:掌握一些簡單的條件概率的計算。 情感、態(tài)度與價值觀:通過對實例的分析,會進(jìn)行簡單的應(yīng)用。 教學(xué)重點:條件概率定義的理解 教學(xué)難點:概率計算公式的應(yīng)用 授課類型:新授課 課時安排:1課時 教 具:多媒體、實物投影儀 教學(xué)設(shè)想:引導(dǎo)學(xué)生形成 “自主學(xué)習(xí)”與“合作學(xué)習(xí)”等良好的學(xué)習(xí)方式。 教學(xué)過程: 一、復(fù)習(xí)引入: 探究: 三張獎券中只有一張能中獎,現(xiàn)分別由三名同學(xué)無放回地抽取,問最后一名同學(xué)抽到中獎獎券的概率是否比前兩名同學(xué)小. 若抽到中獎獎券用“Y ”表示,沒有抽到用“ ”,表示,那么三名同學(xué)的抽獎結(jié)果共有三種可能:Y,Y和 Y.用 B 表示事件“最后一名同學(xué)抽到中獎獎券” , 則 B 僅包含一個基本事件Y.由古典概型計算公式可知,最后一名同學(xué)抽到中獎獎券的概率為. 思考:如果已經(jīng)知道第一名同學(xué)沒有抽到中獎獎券,那么最后一名同學(xué)抽到獎券的概率又是多少? 因為已知第一名同學(xué)沒有抽到中獎獎券,所以可能出現(xiàn)的基本事件只有Y和Y.而“最后一名同學(xué)抽到中獎獎券”包含的基本事件仍是Y.由古典概型計算公式可知.最后一名同學(xué)抽到中獎獎券的概率為,不妨記為P(B|A ) ,其中A表示事件“第一名同學(xué)沒有抽到中獎獎券”. 已知第一名同學(xué)的抽獎結(jié)果為什么會影響最后一名同學(xué)抽到中獎獎券的概率呢? 在這個問題中,知道第一名同學(xué)沒有抽到中獎獎券,等價于知道事件 A 一定會發(fā)生,導(dǎo)致可能出現(xiàn)的基本事件必然在事件 A 中,從而影響事件 B 發(fā)生的概率,使得 P ( B|A )≠P ( B ) . 思考:對于上面的事件A和事件B,P ( B|A)與它們的概率有什么關(guān)系呢? 用表示三名同學(xué)可能抽取的結(jié)果全體,則它由三個基本事件組成,即={Y, Y,Y}.既然已知事件A必然發(fā)生,那么只需在A={Y, Y}的范圍內(nèi)考慮問題,即只有兩個基本事件Y和Y.在事件 A 發(fā)生的情況下事件B發(fā)生,等價于事件 A 和事件 B 同時發(fā)生,即 AB 發(fā)生.而事件 AB 中僅含一個基本事件Y,因此 ==. 其中n ( A)和 n ( AB)分別表示事件 A 和事件 AB 所包含的基本事件個數(shù).另一方面,根據(jù)古典概型的計算公式, 其中 n()表示中包含的基本事件個數(shù).所以, =. 因此,可以通過事件A和事件AB的概率來表示P(B| A ) . 條件概率 1.定義 設(shè)A和B為兩個事件,P(A)>0,那么,在“A已發(fā)生”的條件下,B發(fā)生的條件概率(conditional probability ). 讀作A 發(fā)生的條件下 B 發(fā)生的概率. 定義為 . 由這個定義可知,對任意兩個事件A、B,若,則有 . 并稱上式微概率的乘法公式. 2.P(|B)的性質(zhì): (1)非負(fù)性:對任意的Af. ; (2)規(guī)范性:P(|B)=1; (3)可列可加性:如果是兩個互斥事件,則 . 更一般地,對任意的一列兩兩部相容的事件(I=1,2…),有 P =. 例1.在5道題中有3道理科題和2道文科題.如果不放回地依次抽取2 道題,求: (l)第1次抽到理科題的概率; (2)第1次和第2次都抽到理科題的概率; (3)在第 1 次抽到理科題的條件下,第2次抽到理科題的概率. 解:設(shè)第1次抽到理科題為事件A,第2次抽到理科題為事件B,則第1次和第2次都抽到理科題為事件AB. (1)從5道題中不放回地依次抽取2道的事件數(shù)為 n()==20. 根據(jù)分步乘法計數(shù)原理,n (A)==12 .于是 . (2)因為 n (AB)==6 ,所以 . (3)解法 1 由( 1 ) ( 2 )可得,在第 1 次抽到理科題的條件下,第 2 次抽到理科題的概 . 解法2 因為n (AB)=6 , n (A)=12 ,所以 . 例2.一張儲蓄卡的密碼共位數(shù)字,每位數(shù)字都可從0~9中任選一個.某人在銀行自動提款機(jī)上取錢時,忘記了密碼的最后一位數(shù)字,求: (1)任意按最后一位數(shù)字,不超過 2 次就按對的概率; (2)如果他記得密碼的最后一位是偶數(shù),不超過2次就按對的概率. 解:設(shè)第i次按對密碼為事件(i=1,2) ,則表示不超過2次就按對密碼. (1)因為事件與事件互斥,由概率的加法公式得 . (2)用B 表示最后一位按偶數(shù)的事件,則 . 課堂練習(xí). 1、拋擲一顆質(zhì)地均勻的骰子所得的樣本空間為S={1,2,3,4,5,6},令事件A={2,3,5},B={1,2,4,5,6},求P(A),P(B),P(AB),P(A︱B)。 2、一個正方形被平均分成9個部分,向大正方形區(qū)域隨機(jī)地投擲一個點(每次都能投中),設(shè)投中最左側(cè)3個小正方形區(qū)域的事件記為A,投中最上面3個小正方形或正中間的1個小正方形區(qū)域的事件記為B,求P(AB),P(A︱B)。 3、在一個盒子中有大小一樣的20個球,其中10和紅球,10個白球。求第1個人摸出1個紅球,緊接著第2個人摸出1個白球的概率。 鞏固練習(xí): 課本55頁練習(xí)1、2 課外作業(yè):第60頁 習(xí)題 2. 2 1 ,2 ,3 教學(xué)反思: 1. 通過對具體情景的分析,了解條件概率的定義。 2. 掌握一些簡單的條件概率的計算。 3. 通過對實例的分析,會進(jìn)行簡單的應(yīng)用。- 1.請仔細(xì)閱讀文檔,確保文檔完整性,對于不預(yù)覽、不比對內(nèi)容而直接下載帶來的問題本站不予受理。
- 2.下載的文檔,不會出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請點此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁顯示word圖標(biāo),表示該PPT已包含配套word講稿。雙擊word圖標(biāo)可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計者僅對作品中獨創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 2019-2020年高中數(shù)學(xué) 條件概率教案 新人教A版選修2-3 2019 2020 年高 數(shù)學(xué) 條件 概率 教案 新人 選修
鏈接地址:http://m.jqnhouse.com/p-2397499.html