高中數(shù)學(xué) 第一章 導(dǎo)數(shù)及其應(yīng)用 1.3.3 函數(shù)的最大(小)值與導(dǎo)數(shù)課件 新人教版選修2-2.ppt
《高中數(shù)學(xué) 第一章 導(dǎo)數(shù)及其應(yīng)用 1.3.3 函數(shù)的最大(小)值與導(dǎo)數(shù)課件 新人教版選修2-2.ppt》由會(huì)員分享,可在線(xiàn)閱讀,更多相關(guān)《高中數(shù)學(xué) 第一章 導(dǎo)數(shù)及其應(yīng)用 1.3.3 函數(shù)的最大(小)值與導(dǎo)數(shù)課件 新人教版選修2-2.ppt(38頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1.3.3 函數(shù)的最大(小)值與導(dǎo)數(shù),第一章 1.3 導(dǎo)數(shù)在研究函數(shù)中的應(yīng)用,1.理解最值的概念,了解最值與極值的區(qū)別. 2.會(huì)用導(dǎo)數(shù)求在給定區(qū)間上函數(shù)的最大值、最小值.,,學(xué)習(xí)目標(biāo),,,欄目索引,,,知識(shí)梳理 自主學(xué)習(xí),題型探究 重點(diǎn)突破,當(dāng)堂檢測(cè) 自查自糾,如果在函數(shù) f(x)定義域I內(nèi)存在一點(diǎn)x0,使得對(duì)任意的x∈I,總有 ,那么稱(chēng) f(x0)為函數(shù)的定義域上的最大值. 如果在函數(shù) f(x)定義域I內(nèi)存在一點(diǎn)x0,使得對(duì)任意的x∈I,總有 ,那么稱(chēng) f(x0)為函數(shù)在定義域上的最小值.,知識(shí)梳理 自主學(xué)習(xí),知識(shí)點(diǎn)一 函數(shù)最值的概念,,答案,f(x)≤f(x0),f(x)≥f(x0),,答案,思考 函數(shù)的極值與最值的區(qū)別是什么?,答案 函數(shù)的最大值和最小值是一個(gè)整體性概念,最大值必須是整個(gè)區(qū)間內(nèi)所有函數(shù)值中的最大值;最小值必須是整個(gè)區(qū)間內(nèi)所有函數(shù)值中的最小值. 函數(shù)的最大值、最小值是比較整個(gè)定義區(qū)間的函數(shù)值得出的,函數(shù)的極值是比較極值點(diǎn)附近的函數(shù)值得出的,函數(shù)的極值可以有多個(gè),但最值只能有一個(gè);極值只能在區(qū)間內(nèi)取得,最值則可以在端點(diǎn)取得;有極值的未必有最值,有最值的未必有極值;極值有可能成為最值,最值只要不在端點(diǎn)必定是極值. 當(dāng)連續(xù)函數(shù) f(x)在開(kāi)區(qū)間(a,b)內(nèi)只有一個(gè)導(dǎo)數(shù)為零的點(diǎn)時(shí),若在這一點(diǎn)處 f(x)有極大值(或極小值),則可以判定 f(x)在該點(diǎn)處取得最大值(或最小值),這里(a,b)也可以是無(wú)窮區(qū)間.,1.求函數(shù) y=f(x)在[a,b]上的最值的步驟: (1)求函數(shù) y=f(x)在(a,b)內(nèi)的極值; (2)將函數(shù) y=f(x)的各極值與端點(diǎn)處的函數(shù)值 f(a),f(b)比較,其中最大的一個(gè)是 ,最小的一個(gè)是 . 2.函數(shù)在開(kāi)區(qū)間(a,b)的最值 在開(kāi)區(qū)間(a,b)內(nèi)連續(xù)的函數(shù)不一定有最大值與最小值;若函數(shù) f(x)在開(kāi)區(qū)間I上只有一個(gè)極值,且是極大(小)值,則這個(gè)極大(小)值就是函數(shù) f(x)在區(qū)間I上的最大(小)值.,知識(shí)點(diǎn)二 求函數(shù)的最值,,答案,最大值,最小值,,,答案 沒(méi)有.,(2)函數(shù) f(x)=ln x在[1,2]上有最值嗎?,答案 有最大值ln 2,最小值0.,返回,答案,題型探究 重點(diǎn)突破,題型一 求函數(shù)的最值,,解析答案,例1 求下列各函數(shù)的最值: (1) f(x)=-x4+2x2+3,x∈[-3,2];,解 f′(x)=-4x3+4x, 令f′(x)=-4x(x+1)(x-1)=0, 得x=-1,x=0,x=1. 當(dāng)x變化時(shí),f′(x)及 f(x)的變化情況如下表:,∴當(dāng)x=-3時(shí),f(x)取最小值-60; 當(dāng)x=-1或x=1時(shí),f(x)取最大值4.,,解析答案,反思與感悟,(2) f(x)=x3-3x2+6x-2,x∈[-1,1].,解 f′(x)=3x2-6x+6=3(x2-2x+2)=3(x-1)2+3, ∵f′(x)在[-1,1]內(nèi)恒大于0, ∴f(x)在[-1,1]上為增函數(shù). 故x=-1時(shí),f(x)最小值=-12; x=1時(shí),f(x)最大值=2. 即f(x)的最小值為-12,最大值為2.,,反思與感悟,一般地,在閉區(qū)間[a,b]上的連續(xù)函數(shù) f(x)必有最大值與最小值,在開(kāi)區(qū)間(a,b)內(nèi)的連續(xù)函數(shù) f(x)不一定有最大值與最小值.,跟蹤訓(xùn)練1 設(shè)函數(shù) f(x)=ax3+bx+c(a≠0)為奇函數(shù),其圖象在點(diǎn)(1,f(1))處的切線(xiàn)與直線(xiàn)x-6y-7=0垂直,導(dǎo)函數(shù) f′(x)的最小值為-12. (1)求a,b,c的值;,,解析答案,解 ∵f(x)為奇函數(shù),∴f(-x)=-f(x). 即-ax3-bx+c=-ax3-bx-c,∴c=0. ∵f′(x)=3ax2+b的最小值為-12, ∴a>0,b=-12. 又直線(xiàn)x-6y-7=0的斜率為 , 因此 f′(1)=3a+b=-6, 故a=2,b=-12,c=0.,,(2)求函數(shù)f(x)的單調(diào)遞增區(qū)間,并求函數(shù)f(x)在[-1,3]上的最大值和最小值.,,解析答案,題型二 含參數(shù)的函數(shù)的最值問(wèn)題,,解析答案,例2 已知a是實(shí)數(shù),函數(shù) f(x)=x2(x-a),求f(x)在區(qū)間[0,2]上的最大值.,反思與感悟,,解析答案,,反思與感悟,,反思與感悟,,由于參數(shù)的取值范圍不同會(huì)導(dǎo)致函數(shù)在所給區(qū)間上的單調(diào)性的變化,從而導(dǎo)致最值的變化,所以解決這類(lèi)問(wèn)題常常需要分類(lèi)討論,并結(jié)合不等式的知識(shí)進(jìn)行求解.,反思與感悟,,解析答案,跟蹤訓(xùn)練2 a為常數(shù),求函數(shù) f(x)=-x3+3ax(0≤x≤1)的最大值.,,解析答案,,,題型三 函數(shù)最值問(wèn)題的綜合應(yīng)用,,解析答案,,,解析答案,解 對(duì) f(x)=x3+ax2+bx+c求導(dǎo), 得 f′(x)=3x2+2ax+b.,∴f′(x)=3x2-x-2=(3x+2)(x-1). 令 f′(x)=0,,當(dāng)x變化時(shí),f′(x),f(x)的變化情況如下表:,,解析答案,反思與感悟,(2)若對(duì)x∈[-1,2],不等式 f(x)<c2恒成立,求c的取值范圍.,而 f(2)=2+c,則 f(2)=2+c為最大值. 要使 f(x)<c2(x∈[-1,2])恒成立,只需c2>f(2)=2+c, 解得c<-1或c>2. ∴c的取值范圍是(-∞,-1)∪(2,+∞).,,由不等式恒成立求參數(shù)的取值范圍是一種常見(jiàn)的題型,這種題型的解法有很多,其中最常用的方法就是分離參數(shù),將其轉(zhuǎn)化為函數(shù)的最值問(wèn)題,在求函數(shù)最值時(shí),可以借助導(dǎo)數(shù)來(lái)求解.,反思與感悟,,解析答案,跟蹤訓(xùn)練3 設(shè)函數(shù) f(x)=2x3-9x2+12x+8c, (1)若對(duì)任意的x∈[0,3],都有 f(x)<c2成立,求c的取值范圍;,解 ∵f′(x)=6x2-18x+12=6(x-1)(x-2). ∴當(dāng)x∈(0,1)時(shí),f′(x)>0; 當(dāng)x∈(1,2)時(shí),f′(x)<0; 當(dāng)x∈(2,3)時(shí),f′(x)>0. ∴當(dāng)x=1時(shí),f(x)取極大值 f(1)=5+8c.又 f(3)=9+8c>f(1), ∴x∈[0,3]時(shí),f(x)的最大值為 f(3)=9+8c. ∵對(duì)任意的x∈[0,3],有 f(x)<c2恒成立, ∴9+8c<c2,即c<-1或c>9. ∴c的取值范圍為(-∞,-1)∪(9,+∞).,,解析答案,(2)若對(duì)任意的x∈(0,3),都有 f(x)<c2成立,求c的取值范圍.,解 由(1)知 f(x)<f(3)=9+8c, ∴9+8c≤c2, 即c≤-1或c≥9, ∴c的取值范圍為(-∞,-1]∪[9,+∞).,,解析答案,求最值時(shí)因忽略極值與區(qū)間端點(diǎn)值的對(duì)比致誤,例4 求函數(shù) f(x)=x3-2x2+1在區(qū)間[-1,2]上的最大值與最小值.,返回,,易錯(cuò)易混,防范措施,,,解析答案,∴函數(shù) f(x)在x=0處取得最大值f(0)=1,,錯(cuò)因分析 求出函數(shù)的極值后,要與區(qū)間端點(diǎn)的函數(shù)值進(jìn)行比較后方可確定函數(shù)的最值,否則會(huì)出現(xiàn)錯(cuò)誤.,防范措施,,,∴函數(shù) f(x)在x=0處取得極大值 f(0)=1,,又 f(-1)=-2,f(2)=1,,∴函數(shù) f(x)的最大值是1,最小值是-2.,防范措施,,,若連續(xù)函數(shù)y=f(x)在[a,b]為單調(diào)函數(shù),則其最值必在區(qū)間端點(diǎn)處取得;若該函數(shù)在[a,b]上不單調(diào),即存在極值點(diǎn),則最值可能在端點(diǎn)處取得,也可能在極值點(diǎn)處取得.,返回,防范措施,,當(dāng)堂檢測(cè),1,2,3,4,5,1.函數(shù) y=f(x)在區(qū)間[a,b]上的最大值是M,最小值是m,若M=m,則f′(x)( ) A.等于0 B.大于0 C.小于0 D.以上都有可能,解析 據(jù)題 f(x)為常數(shù)函數(shù),故 f′(x)=0.,A,解析答案,1,2,3,4,5,,2.函數(shù) f(x)=x3-3x+1在閉區(qū)間[-3,0]上的最大值、最小值分別是( ) A.1,-1 B.1,-17 C.3,-17 D.9,-19,解析答案,1,2,3,4,5,答案 C,解析 f′(x)=3x2-3.令f′(x)=0, 即3x2-3=0,解得x=1. 當(dāng)x∈(-∞,-1)時(shí),f′(x)>0; 當(dāng)x∈(-1,1)時(shí),f′(x)<0; 當(dāng)x∈(1,+∞)時(shí),f′(x)>0. 所以 f(x)在x=-1處取得極大值,f(x)極大值=3, 在x=1處取得極小值,f(x)極小值=-1. 而端點(diǎn)處的函數(shù)值f(-3)=-17,f(0)=1, 比較可得f(x)的最大值為3,最小值為-17.,1,2,3,4,5,,3.函數(shù) f(x)=x3-3x(|x|<1)( ) A.有最大值,但無(wú)最小值 B.有最大值,也有最小值 C.無(wú)最大值,但有最小值 D.既無(wú)最大值,也無(wú)最小值,解析答案,D,解析 f′(x)=3x2-3=3(x+1)(x-1), 當(dāng)x∈(-1,1)時(shí),f′(x)<0, 所以 f(x)在(-1,1)上是單調(diào)遞減函數(shù),無(wú)最大值和最小值, 故選D.,1,2,3,4,5,,解析答案,A. B. C. D.,,,,,A,解析 f′(x)=ex(sin x+cos x).,,1,2,3,4,5,,解析答案,5.已知 f(x)=2x3-6x2+a(a為常數(shù))在[-2,2]上有最小值3,那么f(x)在[-2,2]上的最大值是____.,43,解析 令f′(x)=6x2-12x=0,解得x=0或x=2. 當(dāng)x∈(-2,0)時(shí),f′(x)>0; 當(dāng)x∈(0,2)時(shí),f′(x)<0, x=-2,0,2對(duì)應(yīng)的 f(x)的值分別為a-40,a,a-8. 因?yàn)閍-40<a-8<a, 所以a-40為最小值,a為最大值,則a-40=3,a=43, 故 f(x)在[-2,2]上的最大值是43.,,課堂小結(jié),,返回,1.求解函數(shù)在固定區(qū)間上的最值,在熟練掌握求解步驟的基礎(chǔ)上,還需注意:①對(duì)函數(shù)進(jìn)行準(zhǔn)確求導(dǎo);②研究函數(shù)的單調(diào)性,正確確定極值和端點(diǎn)函數(shù)值;③比較極值與端點(diǎn)函數(shù)值的大小時(shí),有時(shí)需要利用作差或作商,甚至要分類(lèi)討論. 2.解決恒成立問(wèn)題常用的方法是轉(zhuǎn)化為求函數(shù)最值問(wèn)題. 如:①f(x)≥m恒成立,只需f(x)min≥m成立即可,也可轉(zhuǎn)化為h(x)=f(x)-m,這樣就是求h(x)min≥0的問(wèn)題. ②若對(duì)某區(qū)間D上恒有f(x)≥g(x)成立,可轉(zhuǎn)化為h(x)=f(x)-g(x),求h(x)min≥0的問(wèn)題.,- 1.請(qǐng)仔細(xì)閱讀文檔,確保文檔完整性,對(duì)于不預(yù)覽、不比對(duì)內(nèi)容而直接下載帶來(lái)的問(wèn)題本站不予受理。
- 2.下載的文檔,不會(huì)出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請(qǐng)點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁(yè)顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開(kāi)word文檔。
- 特殊限制:
部分文檔作品中含有的國(guó)旗、國(guó)徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對(duì)作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 高中數(shù)學(xué) 第一章 導(dǎo)數(shù)及其應(yīng)用 1.3.3 函數(shù)的最大小值與導(dǎo)數(shù)課件 新人教版選修2-2 導(dǎo)數(shù) 及其 應(yīng)用 1.3 函數(shù) 最大 課件 新人 選修
鏈接地址:http://m.jqnhouse.com/p-2436942.html