外文翻譯--數(shù)字圖像處理方法的研究【中英文文獻(xiàn)譯文】
外文翻譯--數(shù)字圖像處理方法的研究【中英文文獻(xiàn)譯文】,中英文文獻(xiàn)譯文,外文,翻譯,數(shù)字圖像,處理,方法,法子,研究,鉆研,中英文,文獻(xiàn),譯文
The research of digital image processing technique
1 Introduction
Interest in digital image processing methods stems from two principal application ares:improvement of pictorial information for human interpretation;and processing of image data for storage,transmission,and representation for autonomous machine perception.
1.1 What Is Digital Image Processing?
An image may be defined as a two-dimensional function, f(x, y), where x and y are spatial(plane) coordinates,and the amplitude of f at any pair of coordinates(x,y) is called the intensity or gray level of the image at that point.When x,y,and digital image.The field of digital image processing refers to processing digital images by means of a digital computer.Note that a digital image is composed of a finite number of elements,each of which has a particular location and value.These elements are referrer to as picture elements,image elements,pels,and pixels.Pixel is the term most widely used to denote the elements of a digital image.We consider these definitions in more formal terms in Chapter2.
Vision is the most advanced of our senses, so it is not surprising that images play the single most important role in human perception. However, unlike human who are limited to the visual band of the electromagnetic (EM) spectrum, imaging machines cover almost the entire EM spectrum, ranging from gamma to radio waves. They can operate on images generated by sources that human are not accustomed to associating with image. These include ultrasound, electron microscopy, and computer-generated images.Thus, digital image processing encompasses a wide and varied field of application.
There is no general agreement among authors regarding where image processing stops and other related areas, such as image analysis and computer vision, start.Sometimes a distinction is made by defining image processing as a discipline in which both the input and output of a process are images. We believe this to be a limiting and somewhat artificial boundary. For example, under this definition, even the trivial task of computing the average intensity of an image (which yields a single number)would not be considered an image processing operation. On the other hand,there are fields such as computer vision whose ultimate goal is to use computer to emulate human vision, including learning and being able to make inferences and take actions based on visual inputs. This area itself is a branch of artificial intelligence (AI)whose objective is to emulate human intelligence. This field of AI is in its earliest stages of infancy in terms of development, with progress having been much slower than originally anticipated. The area of image analysis (also called image understanding) is in between image processing and computer vision.
There no clear-cut boundaries in the continuum from image processing at one end to computer vision at the other. However , one useful paradigm is to consider three types of computerized processes is this continuum: low-, mid-, and high-ever processes. Low-level processes involve primitive operation such as image preprocessing to reduce noise, contrast enhancement, and image sharpening. A low-level process is characterized by the fact that both its input and output are images.Mid-level processing on images involves tasks such as segmentation (partitioning an image into regions or objects), description of those objects to reduce them to a form suitable for computer processing, and classification (recognition) of individual object.Amid-level process is characterized by the fact that its inputs generally are images,but its output is attributes extracted from those images (e.g.,edges contours, and the identity of individual object). Finally, higher-level processing involves “making sense” of an ensemble of recognized objects, as in image analysis, and, at the far end of the continuum, performing the cognitive function normally associated with vision.
Based on the preceding comments, we see that a logical place of overlap between image processing and image analysis is the area of recognition of individual regions or objects in an image. Thus, what we call in this book digital image processing encompasses processes whose inputs and outputs are images and, in addition,encompasses processes that extract attributes from images, up to and including the recognition of individual objects. As a simple illustration to clarify these concepts,consider the area of automated analysis of text. The processes of acquiring an image of the area containing the text. Preprocessing that images, extracting (segmenting) the individual characters, describing the characters in a form suitable for computer processing, and recognizing those individual characters are in the scope of what we call digital image processing in this book. Making sense of the content of the page may be viewed as being in the domain of image analysis and even computer vision,depending on the level of complexity implied by the statement “making cense.” As will become evident shortly, digital image processing, as we have defined it, is used successfully in a broad rang of areas of exceptional social and economic value. The concepts developed in the following chapters are the foundation for the methods used in those application areas.
1.2 The Origins of Digital Image Processing
One of the first applications of digital images was in the newspaper industry, when pictures were first sent by submarine cable between London and New York.Introduction of the Bartlane cable picture transmission system in the early 1920s reduced the time required to transport a picture across the Atlantic from more than a week to less than three hours. Specialized printing equipment coded pictures for cable transmission and then reconstructed them at the receiving end. Figure 1.1 was transmitted in this way and reproduced on a telegraph printer fitted with typefaces simulating a halftone pattern.
Some of the initial problems in improving the visual quality of these early digital pictures were related to the selection of printing procedures and the distribution of intensity levels. The printing method used to obtain Fig. 1.1 was abandoned toward the end of 1921 in favor of a technique based on photographic reproduction made from tapes perforated at the telegraph receiving terminal. Figure 1.2 shows an images obtained using this method. The improvements over Fig. 1.1 are evident, both in tonal quality and in resolution.
FIGURE 1.2A digital picture made in 1922 from a tape punched after the signals had crossed the Atlantic twice. Some errors are Visible. (McFarlane)
FIGURE 1.1 A digital picture produced in
1921 from a coded tape by a telegraph printer With special type faces (McFarlane)
The early Bartlane systems were capable of coding images in five distinct level of gray.This capability was increased to 15 levels in 1929. Figure 1.3 is typical of the images that could be obtained using the 15-tone equipment. During this period,introduction of a system for developing a film plate via light beams that were modulated by the coded picture tape improved the reproduction process considerably.Although the examples just cited involve digital images, they are not considered digital image processing results in the context of our definition because computer were not involved in their creation. Thus, the history of digital processing is intimately tied to the development of the digital computer. In fact digital images require so much storage and computational power that progress in the field of digital image processing has been dependent on the development of digital computers of supporting technologies that include data storage, display, and transmission.
The idea of a computer goes back to the invention of the abacus in Asia Minor,more than 5000 years ago. More recently, there were developments in the past two centuries that are the foundation of what we call computer today. However, the basis for what we call a modern digital computer dates back to only the 1940s with the introduction by John von Neumann of two key concepts: (1) a memory to hold a stored program and data, and (2) conditional branching. There two ideas are the foundation of a central processing unit (CPU), which is at the heart of computer today.Starting with von Neumann, there were a series of advances that led to computers powerful enough to be used for digital image processing. Briefly, these advances may be summarized as follow:
(1) the invention of the transistor by Bell Laboratories in 1948;
(2) the development in the 1950s and 1960s of the high-level programming
languages COBOL (Common Business-Oriented Language) and FORTRAN
( Formula Translator);
(3) the invention of the integrated circuit (IC) at Texas Instruments in 1958;
(4) the development of operating system in the early 1960s;
(5) the development of the microprocessor (a single chip consisting of the central
processing unit, memory, and input and output controls) by Inter in the early
1970s;
(6) introduction by IBM of the personal computer in 1981;
(7) progressive miniaturization of components, starting with large scale integration
(LI) in the late 1970s, then very large scale integration (VLSI) in the 1980s, to
the present use of ultra large scale integration (ULSI).
Figure 1 .3 In 1929 from London to Cenerale Pershing that New York delivers with 15 level tone equipments through cable with Foch do not the photograph by decoration.
Concurrent with these advances were development in the areas of mass storage and display systems, both of which are fundamental requirements for digital image processing.The first computers powerful enough to carry out meaningful image processing tasks appeared in the early 1960s. The birth of what we call digital image processing today can be traced to the availability of those machines and the onset of the apace program during that period. It took the combination of those two developments to bring into focus the potential of digital image processing concepts. Work on using computer techniques for improving images from a space probe began at the Jet Propulsion Laboratory (Pasadena, California) in 1964 when pictures of the moon transmitted by Ranger 7 were processed by a computer to correct various types of image distortion inherent in the on-board television camera. Figure1.4shows the first image of the moon taken by Ranger 7 on July 31, 1964 at 9: 09 A. M. Eastern Daylight Time (EDT), about 17 minutes before impacting the lunar surface (the markers, called reseau mark, are used for geometric corrections, as discussed in Chapter 5). This also is the first image of the moon taken by a U.S. spacecraft. The imaging lessons learned with ranger 7 served as the basis for improved methods used to enhance and restore images from the Surveyor missions to the moon, the Mariner series of flyby mission to Mars, theApollo manned flights to the moon, and others.
In parallel with space application, digital image processing techniques began in the late 1960s and early 1970s to be used in medical imaging, remote Earth resources observations, and astronomy. The invention in the early 1970s of computerized axial tomography (CAT), also called computerized tomography (CT) for short, is one of the most important events in the application of image processing in medical diagnosis. Computerized axial tomography is a process in which a ring of detectors encircles an object (or patient) and an X-ray source, concentric with the detector ring, rotates about the object. The X-rays pass through the object and are collected at the opposite end by the corresponding detectors in the ring. As the source rotates, this procedure is repeated. Tomography consists of algorithms that use the sensed data to construct an image that represents a “slice” through the object. Motion of the object in a direction perpendicular to the ring of detectors produces a set of such slices, which constitute a three-dimensional (3-D) rendition of the inside of the object. Tomography was invented independently by Sir Godfrey N. Hounsfield and Professor Allan M. Cormack, who shared the X-rays were discovered in 1895 by Wilhelm Conrad Roentgen, for which he received the 1901 Nobel Prize for Physics. These two inventions, nearly 100 years apart, led to some of the most active application areas of image processing today.
Figure 1.4 The first picture ofthe moon by a U.S. Spacecraft. Ranger 7 took this image on July 31, 1964 at 9: 09A.M. EDT, about 17 minutes before Impacting the lunar surface. (Courtesy o fNASA.)
數(shù)字圖像處理方法的研究
1 緒論
數(shù)字圖像處理方法的研究源于兩個(gè)主要應(yīng)用領(lǐng)域:其一是為了便于人們分析而對(duì)圖像信息進(jìn)行改進(jìn);其二是為了使機(jī)器自動(dòng)理解而對(duì)圖像數(shù)據(jù)進(jìn)行存儲(chǔ)、傳輸及顯示。
1.1 數(shù)字圖像處理的概念
一幅圖像可定義為一個(gè)二維函數(shù) f(x, y),這里x和y是空間坐標(biāo),而在任何一對(duì)空間坐標(biāo)f(x, y)上的幅值f稱(chēng)為該點(diǎn)圖像的強(qiáng)度或灰度。當(dāng)x,y和幅為f為有限的、離散的數(shù)值時(shí),稱(chēng)該點(diǎn)是由有限的元素組成的,沒(méi)一個(gè)元素都有一個(gè)特定的位置和幅值,這些元素稱(chēng)為圖像元素、畫(huà)面元素或象素。象素是廣泛用于表示數(shù)字圖像元素的詞匯。在第二章,將用更正式的術(shù)語(yǔ)研究這些定義。視覺(jué)是人類(lèi)最高級(jí)的感知器官,所以,毫無(wú)疑問(wèn)圖像在人類(lèi)感知中扮演著最重要的角色。然而,人類(lèi)感知只限于電磁波譜的視覺(jué)波段,成像機(jī)器則可覆蓋幾乎全部電磁波譜,從伽馬射線(xiàn)到無(wú)線(xiàn)電波。它們可以對(duì)非人類(lèi)習(xí)慣的那些圖像源進(jìn)行加工,這些圖像源包括超聲波、電子顯微鏡及計(jì)算機(jī)產(chǎn)生的圖像。因此,數(shù)字圖像處理涉及各種各樣的應(yīng)用領(lǐng)域。
圖像處理涉及的范疇或其他相關(guān)領(lǐng)域(例如,圖像分析和計(jì)算機(jī)視覺(jué))的界定在初創(chuàng)人之間并沒(méi)有一致的看法。有時(shí)用處理的輸人和輸出內(nèi)容都是圖像這一特點(diǎn)來(lái)界定圖像處理的范圍。我們認(rèn)為這一定義僅是人為界定和限制。例如,在這個(gè)定義下,甚至最普通的計(jì)算一幅圖像灰度平均值的工作都不能算做是圖像處理。另一方面,有些領(lǐng)域(如計(jì)算機(jī)視覺(jué))研究的最高目標(biāo)是用計(jì)算機(jī)去模擬人類(lèi)視覺(jué),包括理解和推理并根據(jù)視覺(jué)輸人采取行動(dòng)等。這一領(lǐng)域本身是人工智能的分支,其目的是模仿人類(lèi)智能。人工智能領(lǐng)域處在其發(fā)展過(guò)程中的初期階段,它的發(fā)展比預(yù)期的要慢得多,圖像分析(也稱(chēng)為圖像理解)領(lǐng)域則處在圖像處理和計(jì)算機(jī)視覺(jué)兩個(gè)學(xué)科之間。
從圖像處理到計(jì)算機(jī)視覺(jué)這個(gè)連續(xù)的統(tǒng)一體內(nèi)并沒(méi)有明確的界線(xiàn)。然而,在這個(gè)連續(xù)的統(tǒng)一體中可以考慮三種典型的計(jì)算處理(即低級(jí)、中級(jí)和高級(jí)處理)來(lái)區(qū)分其中的各個(gè)學(xué)科。低級(jí)處理涉及初級(jí)操作,如降低噪聲的圖像預(yù)處理,對(duì)比度增強(qiáng)和圖像尖銳化。低級(jí)處理是以輸人、輸出都是圖像為特點(diǎn)的處理。中級(jí)處理涉及分割〔 把圖像分為不同區(qū)域或目標(biāo)物)以及縮減對(duì)目標(biāo)物的描述,以使其更適合計(jì)算機(jī)處理及對(duì)不同日標(biāo)的分類(lèi)(識(shí)別)。中級(jí)圖像處理是以輸人為圖像,但輸出是從這些圖像中提取的特征(如邊緣、輪廓及不同物體的標(biāo)識(shí)等)為特點(diǎn)的。最后,高級(jí)處理涉及在圖像分析中被識(shí)別物體的總體理解,以及執(zhí)行與視覺(jué)相關(guān)的識(shí)別函數(shù)(處在連續(xù)統(tǒng)一體邊緣)等。
根據(jù)上述討論,我們看到,圖像處理和圖像分析兩個(gè)領(lǐng)域合乎邏輯的重疊區(qū)域是圖像中特定區(qū)域或物體的識(shí)別這一領(lǐng)域。這樣,在本書(shū)中,我們界定數(shù)字圖像處理包括輸人和輸出均是圖像的處理,同時(shí)也包括從圖像中提取特征及識(shí)別特定物體的處理。舉一個(gè)簡(jiǎn)單的文本自動(dòng)分析方面的例子來(lái)具體說(shuō)明這一概念。在自動(dòng)分析文本時(shí)首先獲取一幅包含文本的圖像,對(duì)該圖像進(jìn)行預(yù)處理,提取(分割)字符,然后以適合計(jì)算機(jī)處理的形式描述這些字符,最后識(shí)別這些字符,而所有這些操作都在本書(shū)界定的數(shù)字圖像處理的范圍內(nèi)。理解一頁(yè)的內(nèi)容可能要根據(jù)理解的復(fù)雜度從圖像分析或計(jì)算機(jī)視覺(jué)領(lǐng)域考慮問(wèn)題。這樣,本書(shū)定義的數(shù)字圖像處理的概念將在有特殊社會(huì)和經(jīng)濟(jì)價(jià)值的領(lǐng)域內(nèi)通用。在以下各章展開(kāi)的概念是那些應(yīng)用領(lǐng)域所用方法的基礎(chǔ)。
1.2 數(shù)字圖像處理的起源
數(shù)字圖像處理最早的應(yīng)用之一是在報(bào)紙業(yè),當(dāng)時(shí),圖像第一次通過(guò)海底電纜從倫敦傳往紐約。早在20世紀(jì)20年代曾引入 Btutlane 電纜圖片傳輸系統(tǒng),把橫跨大西洋傳送一幅圖片所需的時(shí)間從一個(gè)多星期減少到3個(gè)小時(shí)。為了用電纜傳輸圖片,首先要進(jìn)行編碼,然后在接收端用特殊的打印設(shè)備重構(gòu)該圖片。圖 1.1就是用這種方法傳送并利用電報(bào)打印機(jī)通過(guò)字符模擬中間色調(diào)還原出來(lái)的圖像。這些早期數(shù)字圖像視覺(jué)質(zhì)量的改進(jìn)工作,涉及到打印過(guò)程的選擇和亮度等級(jí)的分布等問(wèn)題。用于得到圖1.1的打印方法到1921年底就被徹底淘汰了,轉(zhuǎn)而支持一種基于光學(xué)還原的技術(shù),該技術(shù)在電報(bào)接收端用穿孔紙帶打出圖片。圖1.2 就是用這種方法得到的圖像,對(duì)比圖1.1,它在色調(diào)質(zhì)量和分辨率方面的改進(jìn)都很明顯。
圖1.2 1922年在信號(hào)兩次穿越大西洋后,
從穿孔紙帶得到的數(shù)字圖像,可以
看出某些差錯(cuò)( McFalsne)
圖1.1 1421年由電報(bào)打印機(jī)采用特殊字
符在編碼紙帶中產(chǎn)生的數(shù)字圖像
( McFalsne)
早期的Bartlane系統(tǒng)可以用5個(gè)灰度等級(jí)對(duì)圖像編碼,到1929年已增加到15個(gè)等級(jí)。圖1.3所示的這種典型類(lèi)型的圖像就是用15級(jí)色調(diào)設(shè)備得到的。在這一時(shí)期,由于引入了一種用編碼圖像紙帶去調(diào)制光束而使底片感光的系統(tǒng),明顯地改善了復(fù)原過(guò)程。剛才引用的數(shù)字圖像的例子并沒(méi)有考慮數(shù)字圖像處理的結(jié)果,這主要是因?yàn)闆](méi)有涉及到計(jì)算機(jī)。因此,數(shù)字圖像處理的歷史與數(shù)字計(jì)算機(jī)的發(fā)展密切相關(guān)。事實(shí)上,數(shù)字圖像要求非常大的存儲(chǔ)和計(jì)算能力,因此數(shù)字圖像處理領(lǐng)域的發(fā)展必須依靠數(shù)字計(jì)算機(jī)及數(shù)據(jù)存儲(chǔ)、顯示和傳輸?shù)认嚓P(guān)技術(shù)的發(fā)展。計(jì)算機(jī)的概念可追溯到5000多年前中國(guó)算盤(pán)的發(fā)明。近兩個(gè)世紀(jì)以來(lái)的一些發(fā)展也奠定了計(jì)算機(jī)的基礎(chǔ)。然而,現(xiàn)代計(jì)算機(jī)的基礎(chǔ)還要回溯到20世紀(jì)40年代由約翰·馮·諾依曼提出的兩個(gè)重要概念:(l)保存程序和數(shù)據(jù)的存儲(chǔ)器;(2)條件分支。這兩個(gè)概念是中央處理單元(CPU)的基礎(chǔ)。今天,它是計(jì)算機(jī)的心臟。從馮·諾依曼開(kāi)始,引發(fā)了一系列重要技術(shù)進(jìn)步,使得計(jì)算機(jī)以強(qiáng)大的功能用于數(shù)字圖像處理領(lǐng)域。簡(jiǎn)單說(shuō),這些進(jìn)步可歸納為如下幾點(diǎn):
(1)1948年貝爾實(shí)驗(yàn)室發(fā)明了晶體三極管
(2)20世紀(jì)50年代到20世紀(jì)60年代高級(jí)編程語(yǔ)言(如COBOL和FORTRAN)的
開(kāi)發(fā);
(3)1958年得州儀器公司發(fā)明了集成電路(IC);
(4)20世紀(jì)60年代早期操作系統(tǒng)的發(fā)展;
(5)20世紀(jì)70年代 Intel 公司開(kāi)發(fā)了微處理器(由中央處理單元、存儲(chǔ)器和輸
入、輸出控制組成的單一芯片);
(6)1981年IBM公司推出了個(gè)人計(jì)算機(jī);
(7)20世紀(jì)70年代出現(xiàn)的大規(guī)模集成電路(LI)所引發(fā)的元件微小化革命,20世
紀(jì)80年代出現(xiàn)了YLSI(超大規(guī)模集成電路),現(xiàn)在已出現(xiàn)了ULSI。
圖1. 3在1929年從倫敦到紐約用15級(jí)色調(diào)設(shè)備通過(guò)電纜
傳送的 Cenerale Pershing和 Foch的未經(jīng)修飾的照片
伴隨著這些技術(shù)進(jìn)步,大規(guī)模的存儲(chǔ)和顯示系統(tǒng)也隨之發(fā)展起來(lái)。這兩者均是數(shù)字圖像處理的基礎(chǔ)。第一臺(tái)可以執(zhí)行有意義的圖像處理任務(wù)的大型計(jì)算機(jī)出現(xiàn)在20世紀(jì)60年代早期。數(shù)字圖像處理技術(shù)的誕生可追溯至這一時(shí)期這些機(jī)器的使用和空間項(xiàng)目的開(kāi)發(fā),這兩大發(fā)展把人們的注意力集中到數(shù)字圖像處理的潛能上。利用計(jì)算機(jī)技術(shù)改善空間探測(cè)器發(fā)回的圖像的工作,始于 1964 年美國(guó)加利福尼亞的噴氣推進(jìn)實(shí)驗(yàn)室。當(dāng)時(shí)由“旅行者 7 號(hào)”衛(wèi)星傳送的月球圖像由一臺(tái)計(jì)算機(jī)進(jìn)行了處理,以校正航天器上電視攝像機(jī)中各種類(lèi)型的圖像畸變。圖1.4顯示了由“旅行者7號(hào)”于1954年7月31日上午(東部白天時(shí)間)9點(diǎn)09分在光線(xiàn)影響月球表面前約17分鐘時(shí)攝取的第一張?jiān)虑驁D像痕跡(稱(chēng)為網(wǎng)狀痕跡)用于幾何校正,在第5章將討論該間題],這也是美國(guó)航天器取得的第一幅月球圖像?!奥眯姓?7 號(hào)”傳送的圖像可作為改善的增強(qiáng)和復(fù)原圖像(例如來(lái)自“探索者”登月一飛行、“水手號(hào)”系列空間探淵器及阿波羅載人登月飛行的圖像)方法的基礎(chǔ)。進(jìn)行空間應(yīng)用的同時(shí),數(shù)字圖像處理技術(shù)在20世紀(jì)60年代末和20世紀(jì)70年代初開(kāi)始用于醫(yī)學(xué)圖像、地球遙感監(jiān)測(cè)和天文學(xué)等領(lǐng)域。早在20世紀(jì)70年代發(fā)明的計(jì)算機(jī)軸向斷層術(shù)(CAT)[簡(jiǎn)稱(chēng)計(jì)算機(jī)斷層(CT)]是圖像處理在醫(yī)學(xué)診斷領(lǐng)域最重要的應(yīng)用之一。計(jì)算機(jī)軸向斷層術(shù)是一種處理方法,在這種處理中,一個(gè)檢測(cè)器環(huán)圍繞著一個(gè)物體(或病人),并且一個(gè) x 射線(xiàn)源(與檢測(cè)器環(huán)同心)繞著物體旋轉(zhuǎn)。X 射線(xiàn)穿過(guò)物體并由位于對(duì)面環(huán)中的相應(yīng)檢測(cè)器收集起來(lái)。當(dāng) X 射線(xiàn)源旋轉(zhuǎn)時(shí),重復(fù)這一過(guò)程。斷層技術(shù)由一些算法組成,該算法用感知的數(shù)據(jù)去重建通過(guò)物體的“切片”圖像。當(dāng)物體沿垂直于檢測(cè)器的方向運(yùn)動(dòng)時(shí)就產(chǎn)生一系列這樣的“切片”,這些切片組成了物體內(nèi)部的再現(xiàn)圖像。斷層技術(shù)是由 Godfrey N.Hounsfield 先生和 Allan M.Cormack 教授發(fā)明的,他們共同獲得了 1979 年諾貝爾醫(yī)學(xué)獎(jiǎng)。X 射線(xiàn)是在 1895 年由威廉·康拉德·倫琴發(fā)現(xiàn)的,由于這一發(fā)現(xiàn),他獲得了 I901 年諾貝爾物理學(xué)獎(jiǎng)。這兩項(xiàng)發(fā)明相差近 100 年。它們?cè)诮裉煲I(lǐng)著圖像處理某些最活躍的應(yīng)用領(lǐng)域。
圖1. 4美國(guó)航天器傳送的第一張?jiān)虑蛘掌?,“旅行?號(hào)”
衛(wèi)星1964年7月31日9點(diǎn) 09分(東部白天時(shí)間)在
光線(xiàn)影響月球表面前17分鐘時(shí)攝取的圖像
12
收藏