《2019-2020年高中數(shù)學(xué)競賽教材講義 第五章 數(shù)列.doc》由會員分享,可在線閱讀,更多相關(guān)《2019-2020年高中數(shù)學(xué)競賽教材講義 第五章 數(shù)列.doc(6頁珍藏版)》請?jiān)谘b配圖網(wǎng)上搜索。
2019-2020年高中數(shù)學(xué)競賽教材講義 第五章 數(shù)列
一、基礎(chǔ)知識
定義1 數(shù)列,按順序給出的一列數(shù),例如1,2,3,…,n,…. 數(shù)列分有窮數(shù)列和無窮數(shù)列兩種,數(shù)列{an}的一般形式通常記作a1, a2, a3,…,an或a1, a2, a3,…,an…。其中a1叫做數(shù)列的首項(xiàng),an是關(guān)于n的具體表達(dá)式,稱為數(shù)列的通項(xiàng)。
定理1 若Sn表示{an}的前n項(xiàng)和,則S1=a1, 當(dāng)n>1時,an=Sn-Sn-1.
定義2 等差數(shù)列,如果對任意的正整數(shù)n,都有an+1-an=d(常數(shù)),則{an}稱為等差數(shù)列,d叫做公差。若三個數(shù)a, b, c成等差數(shù)列,即2b=a+c,則稱b為a和c的等差中項(xiàng),若公差為d, 則a=b-d, c=b+d.
定理2 等差數(shù)列的性質(zhì):1)通項(xiàng)公式an=a1+(n-1)d;2)前n項(xiàng)和公式:Sn=;3)an-am=(n-m)d,其中n, m為正整數(shù);4)若n+m=p+q,則an+am=ap+aq;5)對任意正整數(shù)p, q,恒有ap-aq=(p-q)(a2-a1);6)若A,B至少有一個不為零,則{an}是等差數(shù)列的充要條件是Sn=An2+Bn.
定義3 等比數(shù)列,若對任意的正整數(shù)n,都有,則{an}稱為等比數(shù)列,q叫做公比。
定理3 等比數(shù)列的性質(zhì):1)an=a1qn-1;2)前n項(xiàng)和Sn,當(dāng)q1時,Sn=;當(dāng)q=1時,Sn=na1;3)如果a, b, c成等比數(shù)列,即b2=ac(b0),則b叫做a, c的等比中項(xiàng);4)若m+n=p+q,則aman=apaq。
定義4 極限,給定數(shù)列{an}和實(shí)數(shù)A,若對任意的>0,存在M,對任意的n>M(n∈N),都有|an-A|<,則稱A為n→+∞時數(shù)列{an}的極限,記作
定義5 無窮遞縮等比數(shù)列,若等比數(shù)列{an}的公比q滿足|q|<1,則稱之為無窮遞增等比數(shù)列,其前n項(xiàng)和Sn的極限(即其所有項(xiàng)的和)為(由極限的定義可得)。
定理3 第一數(shù)學(xué)歸納法:給定命題p(n),若:(1)p(n0)成立;(2)當(dāng)p(n)時n=k成立時能推出p(n)對n=k+1成立,則由(1),(2)可得命題p(n)對一切自然數(shù)n≥n0成立。
競賽常用定理
定理4 第二數(shù)學(xué)歸納法:給定命題p(n),若:(1)p(n0)成立;(2)當(dāng)p(n)對一切n≤k的自然數(shù)n都成立時(k≥n0)可推出p(k+1)成立,則由(1),(2)可得命題p(n)對一切自然數(shù)n≥n0成立。
定理5 對于齊次二階線性遞歸數(shù)列xn=axn-1+bxn-2,設(shè)它的特征方程x2=ax+b的兩個根為α,β:(1)若αβ,則xn=c1an-1+c2βn-1,其中c1, c2由初始條件x1, x2的值確定;(2)若α=β,則xn=(c1n+c2) αn-1,其中c1, c2的值由x1, x2的值確定。
二、方法與例題
1.不完全歸納法。
這種方法是從特殊情況出發(fā)去總結(jié)更一般的規(guī)律,當(dāng)然結(jié)論未必都是正確的,但卻是人類探索未知世界的普遍方式。通常解題方式為:特殊→猜想→數(shù)學(xué)歸納法證明。
例1 試給出以下幾個數(shù)列的通項(xiàng)(不要求證明);1)0,3,8,15,24,35,…;2)1,5,19,65,…;3)-1,0,3,8,15,…。
【解】1)an=n2-1;2)an=3n-2n;3)an=n2-2n.
例2 已知數(shù)列{an}滿足a1=,a1+a2+…+an=n2an, n≥1,求通項(xiàng)an.
【解】 因?yàn)閍1=,又a1+a2=22a2,
所以a2=,a3=,猜想(n≥1).
證明;1)當(dāng)n=1時,a1=,猜想正確。2)假設(shè)當(dāng)n≤k時猜想成立。
當(dāng)n=k+1時,由歸納假設(shè)及題設(shè),a1+ a1+…+a1=[(k+1)2-1] ak+1,,
所以=k(k+2)ak+1,
即=k(k+2)ak+1,
所以=k(k+2)ak+1,所以ak+1=
由數(shù)學(xué)歸納法可得猜想成立,所以
例3 設(shè)0
1.
【證明】 證明更強(qiáng)的結(jié)論:1an.
又由an+1=5an+移項(xiàng)、平方得
①
當(dāng)n≥2時,把①式中的n換成n-1得,即
②
因?yàn)閍n-10,
所以Sn, 所以,
所以Sn<2,得證。
4.特征方程法。
例9 已知數(shù)列{an}滿足a1=3, a2=6, an+2=4n+1-4an,求an.
【解】 由特征方程x2=4x-4得x1=x2=2.
故設(shè)an=(α+βn)2n-1,其中,
所以α=3,β=0,
所以an=32n-1.
例10 已知數(shù)列{an}滿足a1=3, a2=6, an+2=2an+1+3an,求通項(xiàng)an.
【解】 由特征方程x2=2x+3得x1=3, x2=-1,
所以an=α3n+β(-1)n,其中,
解得α=,β,
所以3]。
5.構(gòu)造等差或等比數(shù)列。
例11 正數(shù)列a0,a1,…,an,…滿足=2an-1(n≥2)且a0=a1=1,求通項(xiàng)。
【解】 由得=1,
即
令bn=+1,則{bn}是首項(xiàng)為+1=2,公比為2的等比數(shù)列,
所以bn=+1=2n,所以=(2n-1)2,
所以an=…a0=
注:C1C2…Cn.
例12 已知數(shù)列{xn}滿足x1=2, xn+1=,n∈N+, 求通項(xiàng)。
【解】 考慮函數(shù)f(x)=的不動點(diǎn),由=x得x=
因?yàn)閤1=2, xn+1=,可知{xn}的每項(xiàng)均為正數(shù)。
又+2≥,所以xn+1≥(n≥1)。又
Xn+1-==, ①
Xn+1+==, ②
由①②得。 ③
又>0,
由③可知對任意n∈N+,>0且,
所以是首項(xiàng)為,公比為2的等比數(shù)列。
所以,所以,
解得。
注:本例解法是借助于不動點(diǎn),具有普遍意義。
三、基礎(chǔ)訓(xùn)練題
1. 數(shù)列{xn}滿足x1=2, xn+1=Sn+(n+1),其中Sn為{xn}前n項(xiàng)和,當(dāng)n≥2時,xn=_________.
2. 數(shù)列{xn}滿足x1=,xn+1=,則{xn}的通項(xiàng)xn=_________.
3. 數(shù)列{xn}滿足x1=1,xn=+2n-1(n≥2),則{xn}的通項(xiàng)xn=_________.
4. 等差數(shù)列{an}滿足3a8=5a13,且a1>0, Sn為前n項(xiàng)之和,則當(dāng)Sn最大時,n=_________.
5. 等比數(shù)列{an}前n項(xiàng)之和記為Sn,若S10=10,S30=70,則S40=_________.
6. 數(shù)列{xn}滿足xn+1=xn-xn-1(n≥2),x1=a, x2=b, Sn=x1+x2+…+ xn,則S100=_________.
7. 數(shù)列{an}中,Sn=a1+a2+…+an=n2-4n+1則|a1|+|a2|+…+|a10|=_________.
8. 若,并且x1+x2+…+ xn=8,則x1=_________.
9. 等差數(shù)列{an},{bn}的前n項(xiàng)和分別為Sn和Tn,若,則=_________.
10. 若n!=n(n-1)…21, 則=_________.
11.若{an}是無窮等比數(shù)列,an為正整數(shù),且滿足a5+a6=48, log2a2log2a3+ log2a2log2a5+ log2a2log2a6+ log2a5log2a6=36,求的通項(xiàng)。
12.已知數(shù)列{an}是公差不為零的等差數(shù)列,數(shù)列{}是公比為q的等比數(shù)列,且b1=1, b2=5, b3=17, 求:(1)q的值;(2)數(shù)列{bn}的前n項(xiàng)和Sn。
四、高考水平訓(xùn)練題
1.已知函數(shù)f(x)=,若數(shù)列{an}滿足a1=,an+1=f(an)(n∈N+),則axx=_____________.
2.已知數(shù)列{an}滿足a1=1, an=a1+2a2+3a3+…+(n-1)an-1(n≥2),則{an}的通項(xiàng)an=.
3. 若an=n2+, 且{an}是遞增數(shù)列,則實(shí)數(shù)的取值范圍是__________.
4. 設(shè)正項(xiàng)等比數(shù)列{an}的首項(xiàng)a1=, 前n項(xiàng)和為Sn, 且210S30-(210+1)S20+S10=0,則an=_____________.
5. 已知,則a的取值范圍是______________.
6.?dāng)?shù)列{an}滿足an+1=3an+n(n ∈N+) ,存在_________個a1值,使{an}成等差數(shù)列;存在________個a1值,使{an}成等比數(shù)列。
7.已知(n ∈N+),則在數(shù)列{an}的前50項(xiàng)中,最大項(xiàng)與最小項(xiàng)分別是____________.
8.有4個數(shù),其中前三個數(shù)成等差數(shù)列,后三個數(shù)成等比數(shù)列,并且第一個數(shù)與第四個數(shù)的和中16,第二個數(shù)與第三個數(shù)的和是12,則這四個數(shù)分別為____________.
9. 設(shè){an}是由正數(shù)組成的數(shù)列,對于所有自然數(shù)n, an與2的等差中項(xiàng)等于Sn與2的等比中項(xiàng),則an=____________.
10. 在公比大于1的等比數(shù)列中,最多連續(xù)有__________項(xiàng)是在100與1000之間的整數(shù).
11.已知數(shù)列{an}中,an0,求證:數(shù)列{an}成等差數(shù)列的充要條件是
(n≥2)①恒成立。
12.已知數(shù)列{an}和{bn}中有an=an-1bn, bn=(n≥2), 當(dāng)a1=p, b1=q(p>0, q>0)且p+q=1時,(1)求證:an>0, bn>0且an+bn=1(n∈N);(2)求證:an+1=;(3)求數(shù)列
13.是否存在常數(shù)a, b, c,使題設(shè)等式
122+232+…+n(n+1)2=(an2+bn+c)
對于一切自然數(shù)n都成立?證明你的結(jié)論。
五、聯(lián)賽一試水平訓(xùn)練題
1.設(shè)等差數(shù)列的首項(xiàng)及公差均為非負(fù)整數(shù),項(xiàng)數(shù)不少于3,且各項(xiàng)和為972,這樣的數(shù)列共有_________個。
2.設(shè)數(shù)列{xn}滿足x1=1, xn=,則通項(xiàng)xn=__________.
3. 設(shè)數(shù)列{an}滿足a1=3, an>0,且,則通項(xiàng)an=__________.
4. 已知數(shù)列a0, a1, a2, …, an, …滿足關(guān)系式(3-an+1)(6+an)=18,且a0=3,則=__________.
5. 等比數(shù)列a+log23, a+log43, a+log83的公比為=__________.
6. 各項(xiàng)均為實(shí)數(shù)的等差數(shù)列的公差為4,其首項(xiàng)的平方與其余各項(xiàng)之和不超過100,這樣的數(shù)列至多有__________項(xiàng).
7. 數(shù)列{an}滿足a1=2, a2=6, 且=2,則
________.
8. 數(shù)列{an} 稱為等差比數(shù)列,當(dāng)且僅當(dāng)此數(shù)列滿足a0=0, {an+1-qan}構(gòu)成公比為q的等比數(shù)列,q稱為此等差比數(shù)列的差比。那么,由100以內(nèi)的自然數(shù)構(gòu)成等差比數(shù)列而差比大于1時,項(xiàng)數(shù)最多有__________項(xiàng).
9.設(shè)h∈N+,數(shù)列{an}定義為:a0=1, an+1=。問:對于怎樣的h,存在大于0的整數(shù)n,使得an=1?
10.設(shè){ak}k≥1為一非負(fù)整數(shù)列,且對任意k≥1,滿足ak≥a2k+a2k+1,(1)求證:對任意正整數(shù)n,數(shù)列中存在n個連續(xù)項(xiàng)為0;(2)求出一個滿足以上條件,且其存在無限個非零項(xiàng)的數(shù)列。
11.求證:存在唯一的正整數(shù)數(shù)列a1,a2,…,使得
a1=1, a2>1, an+1(an+1-1)=
六、聯(lián)賽二試水平訓(xùn)練題
1.設(shè)an為下述自然數(shù)N的個數(shù):N的各位數(shù)字之和為n且每位數(shù)字只能取1,3或4,求證:a2n是完全平方數(shù),這里n=1, 2,….
2.設(shè)a1, a2,…, an表示整數(shù)1,2,…,n的任一排列,f(n)是這些排列中滿足如下性質(zhì)的排列數(shù)目:①a1=1; ②|ai-ai+1|≤2, i=1,2,…,n-1。
試問f(xx)能否被3整除?
3.設(shè)數(shù)列{an}和{bn}滿足a0=1,b0=0,且
求證:an (n=0,1,2,…)是完全平方數(shù)。
4.無窮正實(shí)數(shù)數(shù)列{xn}具有以下性質(zhì):x0=1,xi+1
下載提示(請認(rèn)真閱讀)
- 1.請仔細(xì)閱讀文檔,確保文檔完整性,對于不預(yù)覽、不比對內(nèi)容而直接下載帶來的問題本站不予受理。
- 2.下載的文檔,不會出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
文檔包含非法信息?點(diǎn)此舉報(bào)后獲取現(xiàn)金獎勵!
下載文檔到電腦,查找使用更方便
9.9
積分
- 配套講稿:
如PPT文件的首頁顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
-
2019-2020年高中數(shù)學(xué)競賽教材講義
第五章
數(shù)列
2019
2020
年高
數(shù)學(xué)
競賽
教材
講義
第五
- 溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
裝配圖網(wǎng)所有資源均是用戶自行上傳分享,僅供網(wǎng)友學(xué)習(xí)交流,未經(jīng)上傳用戶書面授權(quán),請勿作他用。
鏈接地址:http://m.jqnhouse.com/p-2632895.html