2019-2020年高中數(shù)學(xué) 第三章 函數(shù)的應(yīng)用 第2節(jié) 函數(shù)模型及其應(yīng)用(1)教案 新人教A版必修1.doc
《2019-2020年高中數(shù)學(xué) 第三章 函數(shù)的應(yīng)用 第2節(jié) 函數(shù)模型及其應(yīng)用(1)教案 新人教A版必修1.doc》由會員分享,可在線閱讀,更多相關(guān)《2019-2020年高中數(shù)學(xué) 第三章 函數(shù)的應(yīng)用 第2節(jié) 函數(shù)模型及其應(yīng)用(1)教案 新人教A版必修1.doc(8頁珍藏版)》請在裝配圖網(wǎng)上搜索。
2019-2020年高中數(shù)學(xué) 第三章 函數(shù)的應(yīng)用 第2節(jié) 函數(shù)模型及其應(yīng)用(1)教案 新人教A版必修1 教學(xué)分析 函數(shù)是描述客觀世界變化規(guī)律的基本數(shù)學(xué)模型,不同的變化規(guī)律需要用不同的函數(shù)模型來描述.本節(jié)的教學(xué)目標(biāo)是認(rèn)識指數(shù)函數(shù)、對數(shù)函數(shù)、冪函數(shù)等函數(shù)模型的增長差異,體會直線上升、指數(shù)爆炸與對數(shù)增長的不同,應(yīng)用函數(shù)模型解決簡單問題.課本對幾種不同增長的函數(shù)模型的認(rèn)識及應(yīng)用,都是通過實例來實現(xiàn)的.通過教學(xué)讓學(xué)生認(rèn)識到數(shù)學(xué)來自現(xiàn)實生活,數(shù)學(xué)在現(xiàn)實生活中是有用的. 三維目標(biāo) 1.借助信息技術(shù),利用函數(shù)圖象及數(shù)據(jù)表格,比較指數(shù)函數(shù)、對數(shù)函數(shù)以及冪函數(shù)的增長差異. 2.恰當(dāng)運(yùn)用函數(shù)的三種表示方法(解析式、表格、圖象)并借助信息技術(shù)解決一些實際問題. 3.讓學(xué)生體會數(shù)學(xué)在實際問題中的應(yīng)用價值,培養(yǎng)學(xué)生學(xué)習(xí)興趣. 重點難點 教學(xué)重點:認(rèn)識指數(shù)函數(shù)、對數(shù)函數(shù)、冪函數(shù)等函數(shù)模型的增長差異,體會直線上升、指數(shù)爆炸與對數(shù)增長的不同. 教學(xué)難點:應(yīng)用函數(shù)模型解決簡單問題. 課時安排 2課時 第1課時 作者:林大華 導(dǎo)入新課 思路1.(事例導(dǎo)入) 一張紙的厚度大約為0.01 cm,一塊磚的厚度大約為10 cm,請同學(xué)們計算將一張紙對折n次的厚度和n塊磚的厚度,列出函數(shù)關(guān)系式,并計算n=20時它們的厚度.你的直覺與結(jié)果一致嗎? 解:紙對折n次的厚度:f(n)=0.012n(cm),n塊磚的厚度:g(n)=10n(cm),f(20)≈105 m,g(20)=2 m. 也許同學(xué)們感到意外,通過對本節(jié)課的學(xué)習(xí)大家對這些問題會有更深的了解. 思路2.(直接導(dǎo)入) 請同學(xué)們回憶指數(shù)函數(shù)、對數(shù)函數(shù)以及冪函數(shù)的圖象和性質(zhì),本節(jié)我們將通過實例比較它們的增長差異. 推進(jìn)新課 ①如果張紅購買了每千克1元的蔬菜x千克,需要支付y元,把y表示為x的函數(shù). ②正方形的邊長為x,面積為y,把y表示為x的函數(shù). ③某保護(hù)區(qū)有1單位面積的濕地,由于保護(hù)區(qū)的努力,使?jié)竦孛娣e每年以5%的增長率增長,經(jīng)過x年后濕地的面積為y,把y表示為x的函數(shù). ④分別用表格、圖象表示上述函數(shù).,⑤指出它們屬于哪種函數(shù)模型. ⑥討論它們的單調(diào)性. ⑦比較它們的增長差異. ⑧另外還有哪種函數(shù)模型與對數(shù)函數(shù)相關(guān). 活動:先讓學(xué)生動手做題后再回答,經(jīng)教師提示、點撥,對回答正確的學(xué)生及時表揚(yáng),對回答不準(zhǔn)確的學(xué)生提示引導(dǎo)考慮問題的思路. ①總價等于單價與數(shù)量的積. ②面積等于邊長的平方. ③由特殊到一般,先求出經(jīng)過1年、2年… ④列表畫出函數(shù)圖象. ⑤引導(dǎo)學(xué)生回憶學(xué)過的函數(shù)模型. ⑥結(jié)合函數(shù)表格與圖象討論它們的單調(diào)性. ⑦讓學(xué)生自己比較并體會. ⑧其他與對數(shù)函數(shù)有關(guān)的函數(shù)模型. 討論結(jié)果:①y=x. ②y=x2. ③y=(1+5%)x. ④如下表 x 1 2 3 4 5 6 Y=x 1 2 3 4 5 6 Y=x2 1 4 9 16 25 36 y=(1+5%)x 1.05 1.10 1.16 1.22 1.28 1.34 它們的圖象分別為圖1,圖2,圖3. 圖1 圖2 圖3 ⑤它們分別屬于:y=kx+b(直線型),y=ax2+bx+c(a≠0,拋物線型),y=kax+b(指數(shù)型). ⑥從表格和圖象得出它們都為增函數(shù). ⑦在不同區(qū)間增長速度不同,隨著x的增大y=(1+5%)x的增長速度越來越快,會遠(yuǎn)遠(yuǎn)大于另外兩個函數(shù). ⑧另外還有與對數(shù)函數(shù)有關(guān)的函數(shù)模型,形如y=logax+b,我們把它叫做對數(shù)型函數(shù). 例1假設(shè)你有一筆資金用于投資,現(xiàn)有三種投資方案供你選擇,這三種方案的回報如下: 方案一:每天回報40元; 方案二:第一天回報10元,以后每天比前一天多回報10元; 方案三:第一天回報0.4元,以后每天的回報比前一天翻一番. 請問,你會選擇哪種投資方案? 活動:學(xué)生先思考或討論,再回答.教師根據(jù)實際,可以提示引導(dǎo):我們可以先建立三種投資方案所對應(yīng)的函數(shù)模型,再通過比較它們的增長情況,為選擇投資方案提供依據(jù). 解:設(shè)第x天所得回報是y元,則方案一可以用函數(shù)y=40(x∈N*)進(jìn)行描述;方案二可以用函數(shù)y=10x(x∈N*)進(jìn)行描述;方案三可以用函數(shù)y=0.42x-1(x∈N*)進(jìn)行描述.三個模型中,第一個是常數(shù)函數(shù),后兩個都是遞增函數(shù)模型.要對三個方案做出選擇,就要對它的增長情況進(jìn)行分析.我們先用計算機(jī)計算一下三種所得回報的增長情況. x/天 方案一 方案二 方案三 y/元 增加量/元 y/元 增加量/元 y/元 增加量/元 1 40 10 0.4 2 40 0 20 10 0.8 0.4 3 40 0 30 10 1.6 0.8 4 40 0 40 10 3.2 1.6 5 40 0 50 10 6.4 3.2 6 40 0 60 10 12.8 6.4 7 40 0 70 10 25.6 12.8 8 40 0 80 10 51.2 25.6 9 40 0 90 10 102.4 51.2 10 40 0 100 10 204.8 102.4 … … … … … … … 30 40 0 300 10 214 748 364.8 107 374 182.4 再作出三個函數(shù)的圖象(圖4). 圖4 由表和圖4可知,方案一的函數(shù)是常數(shù)函數(shù),方案二、方案三的函數(shù)都是增函數(shù),但方案二與方案三的函數(shù)的增長情況很不相同.可以看到,盡管方案一、方案二在第1天所得回報分別是方案三的100倍和25倍,但它們的增長量固定不變,而方案三是“指數(shù)增長”,其“增長量”是成倍增加的,從第7天開始,方案三比其他兩方案增長得快得多,這種增長速度是方案一、方案二無法企及的.從每天所得回報看,在第1~3天,方案一最多;在第4天,方案一和方案二一樣多,方案三最少;在第5~8天,方案二最多;第9天開始,方案三比其他兩個方案所得回報多得多,到第30天,所得回報已超過2億元. 下面再看累積的回報數(shù).通過計算機(jī)或計算器列表如下: 天數(shù) 回報/元 方案 1 2 3 4 5 6 7 8 9 10 11 一 40 80 120 160 200 240 280 320 360 400 440 二 10 30 60 100 150 210 280 360 450 550 660 三 0.4 1.2 2.8 6 12.4 25.2 50.8 102 204.4 409.2 818.8 因此,投資1~6天,應(yīng)選擇方案一;投資7天,應(yīng)選擇方案一或方案二;投資8~10天,應(yīng)選擇方案二;投資11天(含11天)以上,則應(yīng)選擇方案三. 針對上例可以思考下面問題: ①選擇哪種方案是依據(jù)一天的回報數(shù)還是累積回報數(shù). ②課本把兩種回報數(shù)都列表給出的意義何在? ③由此得出怎樣的結(jié)論. 答案:①選擇哪種方案依據(jù)的是累積回報數(shù). ②讓我們體會每天回報數(shù)的增長變化. ③上述例子只是一種假想情況,但從中我們可以體會到,不同的函數(shù)增長模型,其增長變化存在很大差異. 變式訓(xùn)練 某市移動通訊公司開設(shè)了兩種通訊業(yè)務(wù):“全球通”使用者先繳50元月基礎(chǔ)費(fèi),然后每通話1分鐘付話費(fèi)0.4元;“神州行”不繳月基礎(chǔ)費(fèi),每通話1分鐘付話費(fèi)0.6元,若設(shè)一個月內(nèi)通話x分鐘,兩種通訊業(yè)務(wù)的費(fèi)用分別為y1元和y2元,那么 (1)寫出y1、y2與x之間的函數(shù)關(guān)系式; (2)在同一直角坐標(biāo)系中畫出兩函數(shù)的圖象; (3)求出一個月內(nèi)通話多少分鐘,兩種通訊業(yè)務(wù)費(fèi)用相同; (4)若某人預(yù)計一個月內(nèi)使用話費(fèi)200元,應(yīng)選擇哪種通訊業(yè)務(wù)較合算. 思路分析:我們可以先建立兩種通訊業(yè)務(wù)所對應(yīng)的函數(shù)模型,再通過比較它們的變化情況,為選擇哪種通訊提供依據(jù).(1)全球通的費(fèi)用應(yīng)為兩種費(fèi)用的和,即月基礎(chǔ)費(fèi)和通話費(fèi),神州行的費(fèi)用應(yīng)為通話費(fèi)用;(2)運(yùn)用描點法畫圖,但應(yīng)注意自變量的取值范圍;(3)可利用方程組求解,也可以根據(jù)圖象回答;(4)求出當(dāng)函數(shù)值為200元時,哪個函數(shù)所對應(yīng)的自變量的值較大. 解:(1)y1=50+0.4x(x≥0),y2=0.6x(x≥0). (2)圖象如圖5所示. 圖5 (3)根據(jù)圖中兩函數(shù)圖象的交點所對應(yīng)的橫坐標(biāo)為250,所以在一個月內(nèi)通話250分鐘時,兩種通訊業(yè)務(wù)的收費(fèi)相同. (4)當(dāng)通話費(fèi)為200元時,由圖象可知,y1所對應(yīng)的自變量的值大于y2所對應(yīng)的自變量的值,即選取全球通更合算. 另解:當(dāng)y1=200時有0.4x+50=200,∴x1=375; 當(dāng)y2=200時有0.6x=200,x2=.顯然375>, ∴選用“全球通”更合算. 點評:在解決實際問題過程中,函數(shù)圖象能夠發(fā)揮很好的作用,因此,我們應(yīng)當(dāng)注意提高讀圖的能力.另外,本例題用到了分段函數(shù),分段函數(shù)是刻畫現(xiàn)實問題的重要模型. 例2某公司為了實現(xiàn)1 000萬元利潤的目標(biāo),準(zhǔn)備制定一個激勵銷售人員的獎勵方案:在銷售利潤達(dá)到10萬元時,按銷售利潤進(jìn)行獎勵,且獎金y(單位:萬元)隨著利潤x(單位:萬元)的增加而增加,但獎金總數(shù)不超過5萬元,同時獎金不超過利潤的25%.現(xiàn)有三個獎勵模型:y=0.25x,y=log7x+1,y=1.002x,其中哪個模型能符合公司的要求? 活動:學(xué)生先思考或討論,再回答.教師根據(jù)實際,可以提示引導(dǎo):某個獎勵模型符合公司要求,就是依據(jù)這個模型進(jìn)行獎勵時,獎金總數(shù)不超過5萬元,同時獎金不超過利潤的25%,由于公司總的利潤目標(biāo)為1 000萬元,所以人員銷售利潤一般不會超過公司總的利潤.于是只需在區(qū)間[10,1 000]上,檢驗三個模型是否符合公司要求即可.不妨先作出函數(shù)圖象,通過觀察函數(shù)的圖象,得到初步結(jié)論,再通過具體計算,確認(rèn)結(jié)果. 解:借助計算器或計算機(jī)作出函數(shù)y=0.25x,y=log7x+1,y=1.002x的圖象(圖6). 圖6 觀察函數(shù)的圖象,在區(qū)間[10,1 000]上,模型y=0.25x,y=1.002x的圖象都有一部分在直線y=5的上方,只有模型y=log7x+1的圖象始終在y=5的下方,這說明只有按模型y=log7x+1進(jìn)行獎勵時才符合公司的要求. 下面通過計算確認(rèn)上述判斷. 首先計算哪個模型的獎金總數(shù)不超過5萬. 對于模型y=0.25x,它在區(qū)間[10,1 000]上遞增,而且當(dāng)x=20時,y=5,因此,當(dāng)x>20時,y>5,所以該模型不符合要求; 對于模型y=1.002x,由函數(shù)圖象,并利用計算器,可知在區(qū)間(805,806)內(nèi)有一個點x0滿足1.002x0=5,由于它在區(qū)間[10,1 000]上遞增,因此當(dāng)x>x0時,y>5,所以該模型也不符合要求; 對于模型y=log7x+1,它在區(qū)間[10,1 000]上遞增,而且當(dāng)x=1 000時,y=log71 000+1≈4.55<5,所以它符合獎金總數(shù)不超過5萬元的要求. 再計算按模型y=log7x+1獎勵時,獎金是否不超過利潤的25%,即當(dāng)x∈[10,1 000]時,是否有=≤0.25成立. 令f(x)=log7x+1-0.25x,x∈[10,1 000].利用計算器或計算機(jī)作出函數(shù)f(x)的圖象(圖7),由函數(shù)圖象可知它是遞減的,因此 圖7 f(x)- 1.請仔細(xì)閱讀文檔,確保文檔完整性,對于不預(yù)覽、不比對內(nèi)容而直接下載帶來的問題本站不予受理。
- 2.下載的文檔,不會出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請點此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計者僅對作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 2019-2020年高中數(shù)學(xué) 第三章 函數(shù)的應(yīng)用 第2節(jié) 函數(shù)模型及其應(yīng)用1教案 新人教A版必修1 2019 2020 年高 數(shù)學(xué) 第三 函數(shù) 應(yīng)用 模型 及其 教案 新人 必修
鏈接地址:http://m.jqnhouse.com/p-2689931.html