巴彥淖爾市臨河2017屆九年級上期中數(shù)學試卷含答案解析.doc
《巴彥淖爾市臨河2017屆九年級上期中數(shù)學試卷含答案解析.doc》由會員分享,可在線閱讀,更多相關(guān)《巴彥淖爾市臨河2017屆九年級上期中數(shù)學試卷含答案解析.doc(16頁珍藏版)》請在裝配圖網(wǎng)上搜索。
2016-2017學年內(nèi)蒙古巴彥淖爾市臨河九年級(上)期中數(shù)學試卷 一、仔細選一選(共40分,每小題4分,不做或做錯沒分喲) 1.下列圖案中,既是軸對稱圖形,又是中心對稱圖形的是( ?。? A. B. C. D. 2.將正六邊形繞其對稱中心旋轉(zhuǎn)后,恰好能與原來的正六邊形重合,那么旋轉(zhuǎn)的角度至少是 ( ) A.120 B.60 C.45 D.30 3.已知x=2是關(guān)于x的一元二次方程x2﹣x﹣2a=0的一個解,則a的值為( ?。? A.0 B.﹣1 C.1 D.2 4.關(guān)于x的方程(a2﹣1)x2﹣3x+2=0是一元二次方程,則( ) A.a(chǎn)≠1 B.a(chǎn)>1 C.a(chǎn)≠0 D.a(chǎn)≠1 5.用配方法解下列方程,其中應在兩邊都加上16的是( ?。? A.x2﹣4x+2=0 B.2x2﹣8x+3=0 C.x2﹣8x=2 D.x2+4x=2 6.方程x(x﹣1)=(x﹣1)(2x+1)的根是( ?。? A.x=﹣1 B.x=1 C.x=1 D.x=0 7.用直接開平方的方法解方程(2x﹣1)2=x2做法正確的是( ) A.2x﹣1=x B.2x﹣1=﹣x C.2x﹣1=x D.2x﹣1=x2 8.把拋物線y=﹣2x2+4x+1的圖象向左平移2個單位,再向上平移3個單位,所得的拋物線的函數(shù)關(guān)系式是( ?。? A.y=﹣2(x﹣1)2+6 B.y=﹣2(x﹣1)2﹣6 C.y=﹣2(x+1)2+6 D.y=﹣2(x+1)2﹣6 9.某科普網(wǎng)站從2009年10月1日起,連續(xù)登載新中國成立60周年來我國科技成果展,該網(wǎng)站的瀏覽量猛增.已知2009年10月份該網(wǎng)站的瀏覽量為80萬人次,第四季度總瀏覽量為350萬人次,如果瀏覽量平均每月增長率為x,則應列方程為( ) A.80(1+x)2=350 B.80[1+(1+x)+(1+x)2]=350 C.80+802(1+x)=350 D.80+802x=350 10.已知二次函數(shù)y=ax2+bx+c的圖象如圖所示,則下列結(jié)論中,正確的是( ?。? A.a(chǎn)b>0,c>0 B.a(chǎn)b>0,c<0 C.a(chǎn)b<0,c>0 D.a(chǎn)b<0,c<0 二、認真填一填(24分,每小題3分) 11.把方程 (x﹣1)(x+3)=1﹣x2化為一般形式為 ?。? 12.若x1,x2是方程x2﹣6x+8=0的兩根,則x1+x2的值 ?。? 13.二次函數(shù)y=x2﹣2x+1的對稱軸方程是 ?。? 14.某三角形的邊長都滿足方程x2﹣5x+6=0,則此三角形的周長是 . 15.若將二次函數(shù)y=x2﹣2x+3配方為y=(x﹣h)2+k的形式,則y= . 16.若拋物線y=x2﹣2x﹣3與x軸分別交于A,B兩點,則AB的長為 ?。? 17.點A(﹣3,m)和點B(n,2)關(guān)于原點對稱,則m+n= ?。? 18.已知二次函數(shù)y=ax2+bx+c的圖象交x軸于A、B兩點,交y軸于C點,且△ABC是直角三角形,請寫出符合要求的一個二次函數(shù)的解析式: ?。? 三、解答題 19.已知在平面直角坐標系中,Rt△ABC的位置如圖所示(方格小正方形的邊長為1). (1)把△ABC繞原點O逆時針方向旋轉(zhuǎn)90得△A1B1C1,A、B、C的對應點分別為A1、B1、C1.請畫出△A1B1C1,并直接寫出點A1、B1、C1的坐標:A1 ,B1 ,C1 ??; (2)線段AB、A1B1的中點分別為M、N,則△OMN的面積為 平方單位. 20.解方程:x2﹣4x﹣4=0.(用配方法解答) 21.解方程:7x2+2x﹣=2x﹣2x2+. 22.二次函數(shù)的圖象經(jīng)過A(4,0),B(0,﹣4),C(2,﹣4)三點: (1)求這個函數(shù)的解析式; (2)求函數(shù)圖頂點的坐標; (3)求拋物線與坐標軸的交點圍成的三角形的面積. 23.已知關(guān)于x的一元二次方程x2﹣4x+k=0有兩個實數(shù)根. (1)求k的取值范圍; (2)如果k是符合條件的最大整數(shù)時,求此時方程的根. 24.如圖,九年級學生要設計一幅幅寬20cm、長30cm的圖案,其中有寬度相等的一橫兩豎的彩條.如果要使彩條所占的面積是圖案的一半.求彩條的寬度. 25.某商場購進一種單價為40元的籃球,如果以單價50元售出,那么每月可售出500個,根據(jù)銷售經(jīng)驗,銷售單價每提高1元,銷售量相應減少10個. (1)設銷售單價提高x元(x為正整數(shù)),寫出每月銷售量y(個)與x(元)之間的函數(shù)關(guān)系式; (2)假設這種籃球每月的銷售利潤為w元,試寫出w與x之間的函數(shù)關(guān)系式,并通過配方討論,當銷售單價定為多少元時,每月銷售這種籃球的利潤最大,最大利潤為多少元? 2016-2017學年內(nèi)蒙古巴彥淖爾市臨河九年級(上)期中數(shù)學試卷 參考答案與試題解析 一、仔細選一選(共40分,每小題4分,不做或做錯沒分喲) 1.下列圖案中,既是軸對稱圖形,又是中心對稱圖形的是( ?。? A. B. C. D. 【考點】中心對稱圖形;軸對稱圖形. 【分析】根據(jù)軸對稱圖形與中心對稱圖形的概念求解. 【解答】解:A、是軸對稱圖形,不是中心對稱圖形,故此選項錯誤; B、是軸對稱圖形,不是中心對稱圖形,故此選項錯誤; C、既是軸對稱圖形,是中心對稱圖形,故此選項正確; D、是軸對稱圖形,不是中心對稱圖形,故此選項錯誤; 故選:C. 2.將正六邊形繞其對稱中心旋轉(zhuǎn)后,恰好能與原來的正六邊形重合,那么旋轉(zhuǎn)的角度至少是 ( ?。? A.120 B.60 C.45 D.30 【考點】旋轉(zhuǎn)對稱圖形. 【分析】正六邊形可以被經(jīng)過中心的射線平分成6個全等的部分,則旋轉(zhuǎn)的角度即可確定. 【解答】解:正六邊形可以被經(jīng)過中心的射線平分成6個全等的部分,則旋轉(zhuǎn)至少3606=60度,能夠與本身重合. 故選:B. 3.已知x=2是關(guān)于x的一元二次方程x2﹣x﹣2a=0的一個解,則a的值為( ?。? A.0 B.﹣1 C.1 D.2 【考點】一元二次方程的解;一元二次方程的定義. 【分析】把方程的解代入方程,可以求出字母系數(shù)a的值. 【解答】解:∵x=2是方程的解, ∴4﹣2﹣2a=0 ∴a=1. 故本題選C. 4.關(guān)于x的方程(a2﹣1)x2﹣3x+2=0是一元二次方程,則( ?。? A.a(chǎn)≠1 B.a(chǎn)>1 C.a(chǎn)≠0 D.a(chǎn)≠1 【考點】一元二次方程的定義. 【分析】本題根據(jù)一元二次方程的定義求解,一元二次方程必須滿足兩個條件: (1)未知數(shù)的最高次數(shù)是2; (2)二次項系數(shù)不為0. 由這兩個條件得到相應的關(guān)系式,再求解即可. 【解答】解:根據(jù)題意得:a2﹣1≠0,即a2≠1,解得:a≠1. 故選D. 5.用配方法解下列方程,其中應在兩邊都加上16的是( ?。? A.x2﹣4x+2=0 B.2x2﹣8x+3=0 C.x2﹣8x=2 D.x2+4x=2 【考點】解一元二次方程﹣配方法. 【分析】首先進行移項,二次項系數(shù)化為1,再在方程左右兩邊同時加上一次項系數(shù)一半的平方,即可變形為左邊是完全平方式,右邊是常數(shù)的形式. 【解答】解:A、∵x2﹣4x+2=0 ∴x2﹣4x=﹣2 ∴x2﹣4x+4=﹣2+4 B、∵2x2﹣8x+3=0 ∴2x2﹣8x=﹣3 ∴x2﹣4x=﹣ ∴x2﹣4x+4=﹣+4 C、∵x2﹣8x=2 ∴x2﹣8x+16=2+16 D、∵x2+4x=2 ∴x2+4x+4=2+4 故選C. 6.方程x(x﹣1)=(x﹣1)(2x+1)的根是( ?。? A.x=﹣1 B.x=1 C.x=1 D.x=0 【考點】解一元二次方程﹣因式分解法. 【分析】此題用因式分解法比較簡單,先移項,再提取公因式,可得方程因式分解的形式,即可求解. 【解答】解:原方程移項得, x(x﹣1)﹣(x﹣1)(2x+1)=0, ∴(x﹣1)(x﹣2x﹣1)=0, ?(x﹣1)=0或(x﹣2x﹣1)=0, 解得:x1=1,x2=﹣1. 故選C. 7.用直接開平方的方法解方程(2x﹣1)2=x2做法正確的是( ?。? A.2x﹣1=x B.2x﹣1=﹣x C.2x﹣1=x D.2x﹣1=x2 【考點】解一元二次方程﹣直接開平方法. 【分析】一元二次方程(2x﹣1)2=x2,表示兩個式子的平方相等,因而這兩個數(shù)相等或互為相反數(shù),據(jù)此即可把方程轉(zhuǎn)化為兩個一元一次方程,即可求解. 【解答】解:開方得2x﹣1=x, 故選C. 8.把拋物線y=﹣2x2+4x+1的圖象向左平移2個單位,再向上平移3個單位,所得的拋物線的函數(shù)關(guān)系式是( ?。? A.y=﹣2(x﹣1)2+6 B.y=﹣2(x﹣1)2﹣6 C.y=﹣2(x+1)2+6 D.y=﹣2(x+1)2﹣6 【考點】二次函數(shù)圖象與幾何變換. 【分析】拋物線平移不改變a的值. 【解答】解:原拋物線的頂點坐標為(1,3),向左平移2個單位,再向上平移3個單位得到新拋物線的頂點坐標為(﹣1,6).可設新拋物線的解析式為:y=﹣2(x﹣h)2+k,代入得:y=﹣2(x+1)2+6.故選C. 9.某科普網(wǎng)站從2009年10月1日起,連續(xù)登載新中國成立60周年來我國科技成果展,該網(wǎng)站的瀏覽量猛增.已知2009年10月份該網(wǎng)站的瀏覽量為80萬人次,第四季度總瀏覽量為350萬人次,如果瀏覽量平均每月增長率為x,則應列方程為( ?。? A.80(1+x)2=350 B.80[1+(1+x)+(1+x)2]=350 C.80+802(1+x)=350 D.80+802x=350 【考點】由實際問題抽象出一元二次方程. 【分析】如果每月的增長率都為x,根據(jù)2007年10月份該網(wǎng)站的瀏覽量為80萬人次,第四季度總瀏覽量為350萬人次,根據(jù)第四季度為10月,11月,12月,可列出方程. 【解答】解:設每月的增長率都為x, 80+80(1+x)+80(1+x)2=350, 即:80[1+(1+x)+(1+x)2]=350 故選:B. 10.已知二次函數(shù)y=ax2+bx+c的圖象如圖所示,則下列結(jié)論中,正確的是( ?。? A.a(chǎn)b>0,c>0 B.a(chǎn)b>0,c<0 C.a(chǎn)b<0,c>0 D.a(chǎn)b<0,c<0 【考點】二次函數(shù)圖象與系數(shù)的關(guān)系. 【分析】由拋物線的開口方向判斷a與0的關(guān)系,由拋物線與y軸的交點判斷c與0的關(guān)系,然后根據(jù)對稱軸在y軸右側(cè),進而對所得結(jié)論進行判斷. 【解答】解:由圖象可知:拋物線開口向下,對稱軸在y軸右側(cè),拋物線與y軸交點在正半軸, ∴a<0,b>0,c>0, ∴ab<0, 故選C. 二、認真填一填(24分,每小題3分) 11.把方程 (x﹣1)(x+3)=1﹣x2化為一般形式為 2x2+2x﹣4=0?。? 【考點】一元二次方程的一般形式. 【分析】一元二次方程ax2+bx+c=0(a,b,c是常數(shù)且a≠0)的a、b、c分別是二次項系數(shù)、一次項系數(shù)、常數(shù)項. 【解答】解:移項、合并同類項,得 2x2+2x﹣4=0, 故答案為:2x2+2x﹣4=0. 12.若x1,x2是方程x2﹣6x+8=0的兩根,則x1+x2的值 6?。? 【考點】根與系數(shù)的關(guān)系. 【分析】根據(jù)根與系數(shù)的關(guān)系即可得出x1+x2=﹣=6,此題得解. 【解答】解:∵x1,x2是方程x2﹣6x+8=0的兩根, ∴x1+x2=6. 故答案為:6. 13.二次函數(shù)y=x2﹣2x+1的對稱軸方程是 x=1?。? 【考點】二次函數(shù)的性質(zhì). 【分析】利用公式法可求二次函數(shù)y=x2﹣2x+1的對稱軸.也可用配方法. 【解答】解:∵﹣=﹣=1 ∴x=1. 14.某三角形的邊長都滿足方程x2﹣5x+6=0,則此三角形的周長是 6或7或8或9?。? 【考點】解一元二次方程﹣因式分解法;三角形三邊關(guān)系. 【分析】首先解方程x2﹣5x+6=0求出方程的解,然后結(jié)合三角形三邊的關(guān)系就可以求出三角形的周長. 【解答】解:∵x2﹣5x+6=0, ∴x1=2,x2=3, ∵三角形的邊長都滿足方程x2﹣5x+6=0, ∴三角形的三邊長可以為 ①2、2、3,∴周長為2+2+3=7; ②2、3、3,∴周長為2+3+3=8; ③2、2、2,∴周長為2+2+2=6; ④3、3、3,∴周長為3+3+3=9. 此三角形的周長是6或7或8或9. 15.若將二次函數(shù)y=x2﹣2x+3配方為y=(x﹣h)2+k的形式,則y=?。▁﹣1)2+2?。? 【考點】二次函數(shù)的三種形式. 【分析】利用配方法先提出二次項系數(shù),在加上一次項系數(shù)的一半的平方來湊完全平方式,把一般式轉(zhuǎn)化為頂點式. 【解答】解:y=x2﹣2x+3=(x2﹣2x+1)+2=(x﹣1)2+2 故本題答案為:y=(x﹣1)2+2. 16.若拋物線y=x2﹣2x﹣3與x軸分別交于A,B兩點,則AB的長為 4?。? 【考點】拋物線與x軸的交點. 【分析】先求出二次函數(shù)與x軸的2個交點坐標,然后再求出2點之間的距離. 【解答】解:二次函數(shù)y=x2﹣2x﹣3與x軸交點A、B的橫坐標為一元二次方程x2﹣2x﹣3=0的兩個根,求得x1=﹣1,x2=3, 則AB=|x2﹣x1|=4. 17.點A(﹣3,m)和點B(n,2)關(guān)于原點對稱,則m+n= 1?。? 【考點】關(guān)于原點對稱的點的坐標. 【分析】根據(jù)兩個點關(guān)于原點對稱時,它們的坐標符號相反,可得出m、n的值,代入可得出代數(shù)式的值. 【解答】解:∵點A(﹣3,m)和點B(n,2)關(guān)于原點對稱, ∴m=﹣2,n=3, 故m+n=3﹣2=1. 故答案為:1. 18.已知二次函數(shù)y=ax2+bx+c的圖象交x軸于A、B兩點,交y軸于C點,且△ABC是直角三角形,請寫出符合要求的一個二次函數(shù)的解析式: y=﹣x2+1 . 【考點】拋物線與x軸的交點;待定系數(shù)法求二次函數(shù)解析式. 【分析】可以在y軸取一點,x軸上去兩點讓它們能組成直角三角形的三個頂點,再利用待定系數(shù)法解則可. 【解答】解:根據(jù)如果三角形一邊上的中線等于這邊的一半,那么這個是直角三角形, 所以可以取C(0,1),A(﹣1,0),B(1,0)三點, 設拋物線的表達式是y=ax2+1,拋物線過(1,0), 所以a+1=0,a=﹣1. 拋物線是:y=﹣x2+1. 三、解答題 19.已知在平面直角坐標系中,Rt△ABC的位置如圖所示(方格小正方形的邊長為1). (1)把△ABC繞原點O逆時針方向旋轉(zhuǎn)90得△A1B1C1,A、B、C的對應點分別為A1、B1、C1.請畫出△A1B1C1,并直接寫出點A1、B1、C1的坐標:A1 (﹣5,1) ,B1 (﹣1,5) ,C1?。ī?,1)??; (2)線段AB、A1B1的中點分別為M、N,則△OMN的面積為 9 平方單位. 【考點】作圖﹣旋轉(zhuǎn)變換. 【分析】(1)已知了旋轉(zhuǎn)中心,旋轉(zhuǎn)方向和旋轉(zhuǎn)角度,可先連接OA、OB、OC,分別按要求旋轉(zhuǎn)得到對應的點A1、A2、A3;再順次連接上述三點,即可得到所求作的三角形,然后根據(jù)三點的位置,來確定它們的坐標; (2)由圖可得到M、N的坐標,此時發(fā)現(xiàn)MN∥x軸,因此以MN為底,M點(或N點)的縱坐標為高,即可得到△A1B1C1的面積. 【解答】解:(1)如圖,△A1B1C1即為所求; 由圖可知:A1(﹣5,1)、B1(﹣1,5)、C1(﹣1,1). (2)由圖知:M(3,3)、N(﹣3,3); ∴△OMN的面積:S=63=9. 20.解方程:x2﹣4x﹣4=0.(用配方法解答) 【考點】解一元二次方程﹣配方法. 【分析】移項后兩邊配上一次項系數(shù)一半的平方后求解可得. 【解答】解:∵x2﹣4x=4, ∴x2﹣4x+4=4+4,即(x﹣2)2=8, ∴x﹣2=2, 則x=22. 21.解方程:7x2+2x﹣=2x﹣2x2+. 【考點】解一元二次方程﹣直接開平方法. 【分析】先把方程化為x2=,然后利用直接開平方法解方程. 【解答】解:方程化為x2=, x=, 所以x1=,x2=﹣. 22.二次函數(shù)的圖象經(jīng)過A(4,0),B(0,﹣4),C(2,﹣4)三點: (1)求這個函數(shù)的解析式; (2)求函數(shù)圖頂點的坐標; (3)求拋物線與坐標軸的交點圍成的三角形的面積. 【考點】拋物線與x軸的交點;待定系數(shù)法求二次函數(shù)解析式. 【分析】(1)根據(jù)待定系數(shù)法即可求出這個函數(shù)的解析式 (2)將拋物線的解析式即可求出頂點坐標. (3)求出拋物線與x軸、y軸的交點坐標即可求出三角形的面積. 【解答】解:(1)設拋物線的解析式為y=a(x﹣h)2+k ∵B、C的縱坐標都是﹣4, ∴B、C關(guān)于拋物線的對稱軸對稱, ∴拋物線的對稱軸為:x=1, 即h=1, ∴y=a(x﹣1)2+k, 將A(4,0)和B(0,﹣4)代入上式, 解得: ∴拋物線的解析式為:y=(x﹣1)2﹣ (2)由(1)可知:頂點坐標為(1,﹣) (3)令y=0代入y=(x﹣1)2﹣, ∴拋物線與x軸的交點坐標為:(4,0)或(﹣2,0) ∵拋物線與y軸的交點坐標為:(0,﹣4) ∴拋物線與坐標軸的交點圍成的三角形的面積為:64=12 23.已知關(guān)于x的一元二次方程x2﹣4x+k=0有兩個實數(shù)根. (1)求k的取值范圍; (2)如果k是符合條件的最大整數(shù)時,求此時方程的根. 【考點】根的判別式. 【分析】(1)根據(jù)關(guān)于x的一元二次方程x2﹣4x+k=0有兩個不等的實數(shù)根,得出16﹣4k>0,即可求出k的取值范圍; (2)先求出k的值,再代入方程x2﹣4x+k=0,求出x的值. 【解答】解:(1)∵關(guān)于x的一元二次方程x2﹣4x+k=0有兩個不等的實數(shù)根, ∴△=b2﹣4ac=16﹣4k>0, 解得:k<4; ∴k的取值范圍是k<4; (2)當k<4時的最大整數(shù)值是3, 則關(guān)于x的方程x2﹣4x+k=0是x2﹣4x+3=0, 解得:x1=1,x2=3. 24.如圖,九年級學生要設計一幅幅寬20cm、長30cm的圖案,其中有寬度相等的一橫兩豎的彩條.如果要使彩條所占的面積是圖案的一半.求彩條的寬度. 【考點】一元二次方程的應用. 【分析】假設圖案中的彩條被減去,剩余的圖案就可以合并成一個長方形.為所以如果設彩條的x,那么這個長方形的長為(30﹣2x)cm,寬為(20﹣x)cm.然后再根據(jù)彩條所占的面積是原來圖案的一半,列出一元二次方程. 【解答】解:設彩條的寬為xcm,則有 (30﹣2x)(20﹣x)=20302, 解得x1=5,x2=30(舍去). 答:彩條寬5cm. 25.某商場購進一種單價為40元的籃球,如果以單價50元售出,那么每月可售出500個,根據(jù)銷售經(jīng)驗,銷售單價每提高1元,銷售量相應減少10個. (1)設銷售單價提高x元(x為正整數(shù)),寫出每月銷售量y(個)與x(元)之間的函數(shù)關(guān)系式; (2)假設這種籃球每月的銷售利潤為w元,試寫出w與x之間的函數(shù)關(guān)系式,并通過配方討論,當銷售單價定為多少元時,每月銷售這種籃球的利潤最大,最大利潤為多少元? 【考點】二次函數(shù)的應用. 【分析】(1)用原來的銷售量去掉隨著銷售單價提高而減少的銷售量就可得出函數(shù)關(guān)系式; (2)根據(jù)銷售利潤是銷售量與銷售一個獲得利潤的乘積,建立二次函數(shù),進一步用配方法解決求最大值問題. 【解答】解:(1)由題意得:y=500﹣10x. (2)w=(50﹣40+x) =5000+400x﹣10x2 =﹣10(x﹣20)2+9000 當x=20時,w有最大值,50+20=70, 即當銷售單價定為70元時,每月銷售這種籃球的利潤最大,最大利潤為9000元. 2017年5月4日 第16頁(共16頁)- 1.請仔細閱讀文檔,確保文檔完整性,對于不預覽、不比對內(nèi)容而直接下載帶來的問題本站不予受理。
- 2.下載的文檔,不會出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請點此認領(lǐng)!既往收益都歸您。
下載文檔到電腦,查找使用更方便
2 積分
下載 |
- 配套講稿:
如PPT文件的首頁顯示word圖標,表示該PPT已包含配套word講稿。雙擊word圖標可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設計者僅對作品中獨創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 巴彥淖爾 臨河 2017 九年級 期中 數(shù)學試卷 答案 解析
鏈接地址:http://m.jqnhouse.com/p-2839390.html