(浙江專(zhuān)用)2020版高考數(shù)學(xué)新增分大一輪復(fù)習(xí) 第十章 計(jì)數(shù)原理 10.3 二項(xiàng)式定理講義(含解析).docx
《(浙江專(zhuān)用)2020版高考數(shù)學(xué)新增分大一輪復(fù)習(xí) 第十章 計(jì)數(shù)原理 10.3 二項(xiàng)式定理講義(含解析).docx》由會(huì)員分享,可在線(xiàn)閱讀,更多相關(guān)《(浙江專(zhuān)用)2020版高考數(shù)學(xué)新增分大一輪復(fù)習(xí) 第十章 計(jì)數(shù)原理 10.3 二項(xiàng)式定理講義(含解析).docx(12頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
10.3 二項(xiàng)式定理 最新考綱 考情考向分析 1.了解二項(xiàng)式定理. 2.理解二項(xiàng)式系數(shù)的性質(zhì). 以理解和應(yīng)用二項(xiàng)式定理為主,??疾槎?xiàng)展開(kāi)式,通項(xiàng)公式以及二項(xiàng)式系數(shù)的性質(zhì),賦值法求系數(shù)的和也是考查的熱點(diǎn);本節(jié)內(nèi)容在高考中以選擇、填空題的形式進(jìn)行考查,難度中檔. 1.二項(xiàng)式定理 二項(xiàng)式定理 (a+b)n=Can+Can-1b1+…+Can-kbk+…+Cbn(n∈N*) 二項(xiàng)展開(kāi)式的通項(xiàng)公式 Tk+1=Can-kbk,它表示第k+1項(xiàng) 二項(xiàng)式系數(shù) 二項(xiàng)展開(kāi)式中各項(xiàng)的系數(shù)C(k∈{0,1,2,…,n}) 2.二項(xiàng)式系數(shù)的性質(zhì) (1)C=1,C=1. C=C+C. (2)C=C. (3)當(dāng)n是偶數(shù)時(shí),項(xiàng)的二項(xiàng)式系數(shù)最大;當(dāng)n是奇數(shù)時(shí),與項(xiàng)的二項(xiàng)式系數(shù)相等且最大. (4)(a+b)n展開(kāi)式的二項(xiàng)式系數(shù)和:C+C+C+…+C=2n. 概念方法微思考 1.(a+b)n與(b+a)n的展開(kāi)式有何區(qū)別與聯(lián)系? 提示 (a+b)n的展開(kāi)式與(b+a)n的展開(kāi)式的項(xiàng)完全相同,但對(duì)應(yīng)的項(xiàng)不相同而且兩個(gè)展開(kāi)式的通項(xiàng)不同. 2.二項(xiàng)展開(kāi)式形式上有什么特點(diǎn)? 提示 二項(xiàng)展開(kāi)式形式上的特點(diǎn) (1)項(xiàng)數(shù)為n+1. (2)各項(xiàng)的次數(shù)都等于二項(xiàng)式的冪指數(shù)n,即a與b的指數(shù)的和為n. (3)字母a按降冪排列,從第一項(xiàng)開(kāi)始,次數(shù)由n逐項(xiàng)減1直到零;字母b按升冪排列,從第一項(xiàng)起,次數(shù)由零逐項(xiàng)增1直到n. (4)二項(xiàng)式的系數(shù)從C,C,一直到C,C. 3.二項(xiàng)展開(kāi)式中二項(xiàng)式系數(shù)最大時(shí)該項(xiàng)的系數(shù)就最大嗎? 提示 不一定最大,當(dāng)二項(xiàng)式中a,b的系數(shù)為1時(shí),此時(shí)二項(xiàng)式系數(shù)等于項(xiàng)的系數(shù),否則不一定. 題組一 思考辨析 1.判斷下列結(jié)論是否正確(請(qǐng)?jiān)诶ㄌ?hào)中打“√”或“”) (1)Can-kbk是二項(xiàng)展開(kāi)式的第k項(xiàng).( ) (2)二項(xiàng)展開(kāi)式中,系數(shù)最大的項(xiàng)為中間一項(xiàng)或中間兩項(xiàng).( ) (3)(a+b)n的展開(kāi)式中某一項(xiàng)的二項(xiàng)式系數(shù)與a,b無(wú)關(guān).( √ ) (4)(a-b)n的展開(kāi)式第k+1項(xiàng)的系數(shù)為Can-kbk.( ) (5)(x-1)n的展開(kāi)式二項(xiàng)式系數(shù)和為-2n.( ) 題組二 教材改編 2.[P31例2(2)](1+2x)5的展開(kāi)式中,x2的系數(shù)等于( ) A.80B.40C.20D.10 答案 B 解析 Tk+1=C(2x)k=C2kxk,當(dāng)k=2時(shí),x2的系數(shù)為C22=40. 3.[P31例2(2)]若n展開(kāi)式的二項(xiàng)式系數(shù)之和為64,則展開(kāi)式的常數(shù)項(xiàng)為( ) A.10B.20C.30D.120 答案 B 解析 二項(xiàng)式系數(shù)之和2n=64,所以n=6,Tk+1=Cx6-kk=Cx6-2k,當(dāng)6-2k=0,即當(dāng)k=3時(shí)為常數(shù)項(xiàng),T4=C=20. 4.[P41B組T5]若(x-1)4=a0+a1x+a2x2+a3x3+a4x4,則a0+a2+a4的值為( ) A.9B.8C.7D.6 答案 B 解析 令x=1,則a0+a1+a2+a3+a4=0,令x=-1,則a0-a1+a2-a3+a4=16,兩式相加得a0+a2+a4=8. 題組三 易錯(cuò)自糾 5.(x-y)n的二項(xiàng)展開(kāi)式中,第m項(xiàng)的系數(shù)是( ) A.C B.C C.C D.(-1)m-1C 答案 D 解析 (x-y)n二項(xiàng)展開(kāi)式第m項(xiàng)的通項(xiàng)公式為 Tm=C(-y)m-1xn-m+1, 所以系數(shù)為C(-1)m-1. 6.已知(x+1)10=a1+a2x+a3x2+…+a11x10.若數(shù)列a1,a2,a3,…,ak(1≤k≤11,k∈N*)是一個(gè)單調(diào)遞增數(shù)列,則k的最大值是( ) A.5B.6C.7D.8 答案 B 解析 由二項(xiàng)式定理知,an=C(n=1,2,3,…,11). 又(x+1)10展開(kāi)式中二項(xiàng)式系數(shù)最大項(xiàng)是第6項(xiàng), 所以a6=C,則k的最大值為6. 7.(x-y)4的展開(kāi)式中,x3y3項(xiàng)的系數(shù)為_(kāi)_______. 答案 6 解析 二項(xiàng)展開(kāi)式的通項(xiàng)是Tk+1=C(x)4-k(-y)k=,令4-=2+=3,解得k=2,故展開(kāi)式中x3y3的系數(shù)為(-1)2C=6. 題型一 二項(xiàng)展開(kāi)式 命題點(diǎn)1 求指定項(xiàng)(或系數(shù)) 例1 (1)(1+x)6的展開(kāi)式中x2的系數(shù)為( ) A.15B.20C.30D.35 答案 C 解析 因?yàn)?1+x)6的通項(xiàng)為Cxk,所以(1+x)6的展開(kāi)式中含x2的項(xiàng)為1Cx2和Cx4. 因?yàn)镃+C=2C=2=30, 所以(1+x)6的展開(kāi)式中x2的系數(shù)為30. 故選C. (2)(2018溫州市高考適應(yīng)性測(cè)試)在9的展開(kāi)式中,常數(shù)項(xiàng)是( ) A.C B.-C C.8C D.-8C 答案 D 解析 二項(xiàng)式9的展開(kāi)式的通項(xiàng)公式為C9-k(-2x)k=,令=0,得k=3,則二項(xiàng)式9的展開(kāi)式中的常數(shù)項(xiàng)為(-2)3C=-8C,故選D. (3)(x2+x+y)4的展開(kāi)式中,x3y2的系數(shù)是________. 答案 12 解析 方法一 (x2+x+y)4=[(x2+x)+y]4, 其展開(kāi)式的第k+1項(xiàng)的通項(xiàng)公式為T(mén)k+1=C(x2+x)4-kyk, 因?yàn)橐髕3y2的系數(shù),所以k=2, 所以T3=C(x2+x)4-2y2=6(x2+x)2y2. 因?yàn)?x2+x)2的展開(kāi)式中x3的系數(shù)為2, 所以x3y2的系數(shù)是62=12. 方法二 (x2+x+y)4表示4個(gè)因式x2+x+y的乘積, 在這4個(gè)因式中,有2個(gè)因式選y,其余的2個(gè)因式中有一個(gè)選x,剩下的一個(gè)選x2,即可得到含x3y2的項(xiàng), 故x3y2的系數(shù)是CCC=12. 命題點(diǎn)2 求參數(shù) 例2 (1)若(x2-a)10的展開(kāi)式中x6的系數(shù)為30,則a等于( ) A.B.C.1D.2 答案 D 解析 由題意得10的展開(kāi)式的通項(xiàng)公式是Tk+1=Cx10-kk=Cx10-2k,10的展開(kāi)式中含x4(當(dāng)k=3時(shí)),x6(當(dāng)k=2時(shí))項(xiàng)的系數(shù)分別為C,C,因此由題意得C-aC=120-45a=30,由此解得a=2,故選D. (2)若6的展開(kāi)式中常數(shù)項(xiàng)為,則實(shí)數(shù)a的值為( ) A.2B.C.-2D. 答案 A 解析 6的展開(kāi)式的通項(xiàng)為T(mén)k+1=C(x2)6-kk=Ckx12-3k,令12-3k=0, 得k=4. 故C4=,即4=,解得a=2,故選A. 思維升華求二項(xiàng)展開(kāi)式中的特定項(xiàng),一般是化簡(jiǎn)通項(xiàng)公式后,令字母的指數(shù)符合要求(求常數(shù)項(xiàng)時(shí),指數(shù)為零;求有理項(xiàng)時(shí),指數(shù)為整數(shù)等),解出項(xiàng)數(shù)k+1,代回通項(xiàng)公式即可. 跟蹤訓(xùn)練1 (1)(2018浙江七彩陽(yáng)光聯(lián)盟聯(lián)考)(1+x)6的展開(kāi)式中x3的系數(shù)為_(kāi)_________. 答案 14 解析 在(1+x)6的展開(kāi)式中x3的系數(shù)為C=20,(1+x)6的展開(kāi)式中x3的系數(shù)為C=6,所以(1+x)6的展開(kāi)式中x3的系數(shù)為20-6=14. (2)(2018麗水、衢州、湖州三地教學(xué)質(zhì)量檢測(cè))若6的展開(kāi)式中x3的系數(shù)為-12,則a=______;常數(shù)項(xiàng)是________. 答案 2 60 解析 由于二項(xiàng)展開(kāi)式的通項(xiàng)Tk+1=Cx6-kk=(-a)kCx6-3k,令6-3k=3,則k=1,所以(-a)C=-6a=-12,a=2;令6-3k=0,則k=2,所以常數(shù)項(xiàng)是(-2)2C=415=60. 題型二 二項(xiàng)式系數(shù)的和與各項(xiàng)的系數(shù)和問(wèn)題 例3 (1)(a+x)(1+x)4的展開(kāi)式中x的奇數(shù)次冪項(xiàng)的系數(shù)之和為32,則a=____________. 答案 3 解析 設(shè)(a+x)(1+x)4=a0+a1x+a2x2+a3x3+a4x4+a5x5, 令x=1,得16(a+1)=a0+a1+a2+a3+a4+a5,① 令x=-1,得0=a0-a1+a2-a3+a4-a5.② ①-②,得16(a+1)=2(a1+a3+a5), 即展開(kāi)式中x的奇數(shù)次冪的系數(shù)之和為a1+a3+a5=8(a+1),所以8(a+1)=32,解得a=3. (2)若(x+2+m)9=a0+a1(x+1)+a2(x+1)2+…+a9(x+1)9,且(a0+a2+…+a8)2-(a1+a3+…+a9)2=39,則實(shí)數(shù)m的值為_(kāi)_______. 答案 1或-3 解析 令x=0,則(2+m)9=a0+a1+a2+…+a9, 令x=-2,則m9=a0-a1+a2-a3+…-a9, 又(a0+a2+…+a8)2-(a1+a3+…+a9)2 =(a0+a1+a2+…+a9)(a0-a1+a2-a3+…+a8-a9)=39, ∴(2+m)9m9=39,∴m(2+m)=3, ∴m=-3或m=1. (3)若n的展開(kāi)式中含x的項(xiàng)為第6項(xiàng),設(shè)(1-3x)n=a0+a1x+a2x2+…+anxn,則a1+a2+…+an的值為_(kāi)_______. 答案 255 解析 n展開(kāi)式的第k+1項(xiàng)為 Tk+1=C(x2)n-kk=C(-1)kx2n-3k, 當(dāng)k=5時(shí),2n-3k=1,∴n=8. 對(duì)(1-3x)8=a0+a1x+a2x2+…+a8x8, 令x=1,得a0+a1+…+a8=28=256. 又當(dāng)x=0時(shí),a0=1, ∴a1+a2+…+a8=255. 思維升華 (1)“賦值法”普遍適用于恒等式,對(duì)形如(ax+b)n,(ax2+bx+c)m (a,b,c∈R)的式子求其展開(kāi)式的各項(xiàng)系數(shù)之和,常用賦值法. (2)若f(x)=a0+a1x+a2x2+…+anxn,則f(x)展開(kāi)式中各項(xiàng)系數(shù)之和為f(1),奇數(shù)項(xiàng)系數(shù)之和為a0+a2+a4+…=,偶數(shù)項(xiàng)系數(shù)之和為a1+a3+a5+…=. 跟蹤訓(xùn)練2 已知(1-2x)7=a0+a1x+a2x2+…+a7x7. 求:(1)a1+a2+…+a7; (2)a1+a3+a5+a7; (3)a0+a2+a4+a6; (4)|a0|+|a1|+|a2|+…+|a7|. 解 令x=1,則a0+a1+a2+a3+a4+a5+a6+a7 =-1.① 令x=-1,則a0-a1+a2-a3+a4-a5+a6-a7=37.② (1)∵a0=C=1,∴a1+a2+a3+…+a7=-2. (2)(①-②)2, 得a1+a3+a5+a7==-1094. (3)(①+②)2, 得a0+a2+a4+a6==1093. (4)方法一 ∵(1-2x)7展開(kāi)式中,a0,a2,a4,a6大于零,而a1,a3,a5,a7小于零, ∴|a0|+|a1|+|a2|+…+|a7|=(a0+a2+a4+a6)-(a1+a3+a5+a7)=1093-(-1094)=2187. 方法二 |a0|+|a1|+|a2|+…+|a7|即為(1+2x)7展開(kāi)式中各項(xiàng)的系數(shù)和,令x=1, ∴|a0|+|a1|+|a2|+…+|a7|=37=2187. 題型三 二項(xiàng)式定理的應(yīng)用 例4 (1)設(shè)a∈Z且0≤a<13,若512012+a能被13整除,則a等于( ) A.0B.1C.11D.12 答案 D 解析 512012+a=(52-1)2012+a=C522012-C522011+…+C52(-1)2011+C(-1)2012+a, ∵C522012-C522011+…+C52(-1)2011能被13整除且512012+a能被13整除, ∴C(-1)2012+a=1+a也能被13整除,因此a的值為12. (2)設(shè)復(fù)數(shù)x=(i是虛數(shù)單位),則Cx+Cx2+Cx3+…+Cx2017等于( ) A.i B.-i C.-1+i D.-1-i 答案 C 解析 x===-1+i, Cx+Cx2+Cx3+…+Cx2017 =(1+x)2017-1=i2017-1=i-1. 思維升華 (1)逆用二項(xiàng)式定理的關(guān)鍵 根據(jù)所給式子的特點(diǎn)結(jié)合二項(xiàng)展開(kāi)式的要求,使之具備二項(xiàng)式定理右邊的結(jié)構(gòu),然后逆用二項(xiàng)式定理求解. (2)利用二項(xiàng)式定理解決整除問(wèn)題的思路 ①觀(guān)察除式與被除式間的關(guān)系; ②將被除式拆成二項(xiàng)式; ③結(jié)合二項(xiàng)式定理得出結(jié)論. 跟蹤訓(xùn)練3 (1)1-90C+902C-903C+…+(-1)k90kC+…+9010C除以88的余數(shù)是( ) A.-1B.1C.-87D.87 答案 B 解析 1-90C+902C-903C+…+(-1)k90kC+…+9010C=(1-90)10=8910=(88+1)10=8810+C889+…+C88+1, ∵前10項(xiàng)均能被88整除,∴余數(shù)是1. (2)若(1-2x)2018=a0+a1x+a2x2+…+a2018x2018,則++…+=________. 答案?。? 解析 當(dāng)x=0時(shí),左邊=1,右邊=a0,∴a0=1. 當(dāng)x=時(shí),左邊=0,右邊=a0+++…+, ∴0=1+++…+, 即++…+=-1. 1.在6的展開(kāi)式中,常數(shù)項(xiàng)為( ) A.-240B.-60C.60D.240 答案 D 解析 6的展開(kāi)式中,通項(xiàng)公式為T(mén)k+1=C(x2)6-kk=(-2)kCx12-3k,令12-3k=0,得k=4,故常數(shù)項(xiàng)為T(mén)5=(-2)4C=240,故選D. 2.(2018杭州質(zhì)檢)二項(xiàng)式5的展開(kāi)式中含x3項(xiàng)的系數(shù)是( ) A.80B.48C.-40D.-80 答案 D 解析 ∵5展開(kāi)式的通項(xiàng)為T(mén)k+1=C(2x)5-kk=(-1)k25-kCx5-2k,5-2k=3,則k=1,∴含x3的項(xiàng)為T(mén)2=(-1)124Cx3=-80x3,其中系數(shù)為-80,故選D. 3.(x+y)(2x-y)6的展開(kāi)式中x4y3的系數(shù)為( ) A.-80B.-40C.40D.80 答案 D 解析 (2x-y)6的展開(kāi)式的通項(xiàng)公式為T(mén)k+1=C(2x)6-k(-y)k,當(dāng)k=2時(shí),T3=240x4y2,當(dāng)k=3時(shí),T4=-160x3y3,故x4y3的系數(shù)為240-160=80,故選D. 4.(1+3x)n的展開(kāi)式中x5與x6的系數(shù)相等,則x4的二項(xiàng)式系數(shù)為( ) A.21B.35C.45D.28 答案 B 解析 ∵Tk+1=C(3x)k=3kCxk,由已知得35C=36C,即C=3C,∴n=7,因此,x4的二項(xiàng)式系數(shù)為C=35,故選B. 5.(2018浙江省考前熱身聯(lián)考)3展開(kāi)式的常數(shù)項(xiàng)為( ) A.120B.160C.200D.240 答案 B 解析 3=6,展開(kāi)式的通項(xiàng)為T(mén)k+1=C6-k(2x)k=C2kx2k-6,令2k-6=0,可得k=3,故展開(kāi)式的常數(shù)項(xiàng)為160. 6.若在(x+1)4(ax-1)的展開(kāi)式中,x4項(xiàng)的系數(shù)為15,則a的值為( ) A.-4B.C.4D. 答案 C 解析 ∵(x+1)4(ax-1)=(x4+4x3+6x2+4x+1)(ax-1),∴x4項(xiàng)的系數(shù)為4a-1=15,∴a=4. 7.(2018浙江省重點(diǎn)中學(xué)高三調(diào)研)9的展開(kāi)式中,除常數(shù)項(xiàng)外,各項(xiàng)系數(shù)的和為( ) A.-671B.671C.672D.673 答案 B 解析 令x=1,可得該二項(xiàng)展開(kāi)式各項(xiàng)系數(shù)之和為-1.因?yàn)樵摱?xiàng)展開(kāi)式的通項(xiàng)公式為T(mén)k+1=C9-k(-2x2)k=C(-2)kx3k-9,令3k-9=0,得k=3,所以該二項(xiàng)展開(kāi)式中的常數(shù)項(xiàng)為C(-2)3=-672,所以除常數(shù)項(xiàng)外,各項(xiàng)系數(shù)的和為-1-(-672)=671,故選B. 8.若(1-3x)2018=a0+a1x+…+a2018x2018,x∈R,則a13+a232+…+a201832018的值為( ) A.22018-1B.82018-1C.22018D.82018 答案 B 解析 由已知,令x=0,得a0=1,令x=3,得a0+a13+a232+…+a201832018=(1-9)2018=82018,所以a13+a232+…+a201832018=82018-a0=82018-1,故選B. 9.(2018紹興諸暨期末)已知(2x+1)6=a6(x+1)6+a5(x+1)5+a4(x+1)4+…+a1(x+1)+a0,則a0+a1+a2+…+a6=________,a2=________. 答案 1 60 解析 令x=0,即得16=a6+a5+…+a1+a0, 又(2x+1)6=[2(x+1)-1]6的展開(kāi)式的通項(xiàng)為T(mén)k+1=C[2(x+1)]6-k(-1)k, 則a2=C22(-1)4=60. 10.(2018杭州四校聯(lián)考)已知n的展開(kāi)式中只有第7項(xiàng)的二項(xiàng)式系數(shù)最大,則n=________;若含x8項(xiàng)的系數(shù)為,則常數(shù)項(xiàng)為_(kāi)_______. 答案 12 解析 因?yàn)檎归_(kāi)式中只有第7項(xiàng)的二項(xiàng)式系數(shù)最大,所以展開(kāi)式共有13項(xiàng),n=12,則二項(xiàng)展開(kāi)式的通項(xiàng)Tk+1=令12-k=8,得k=3,所以Ca9=,得a9=,得a9=,即a=. 令12-k=0,得k=9, 故常數(shù)項(xiàng)為T(mén)10=Ca3=3=. 11.9192除以100的余數(shù)是________. 答案 81 解析 9192=(90+1)92=C9092+C9091+…+C902+(C90+C)=k100+9290+1=k100+82100+81(k為正整數(shù)),所以9192除以100的余數(shù)是81. 12.若(1+x+x2)6=a0+a1x+a2x2+…+a12x12,則a2+a4+…+a12=__________.(用數(shù)字作答) 答案 364 解析 令x=1,得a0+a1+a2+…+a12=36, 令x=-1,得a0-a1+a2-…+a12=1, ∴a0+a2+a4+…+a12=. 令x=0,得a0=1, ∴a2+a4+…+a12=-1=364. 13.(2014浙江)在(1+x)6(1+y)4的展開(kāi)式中,記xmyn項(xiàng)的系數(shù)為f(m,n),則f(3,0)+f(2,1)+f(1,2)+f(0,3)等于( ) A.45B.60C.120D.210 答案 C 解析 因?yàn)閒(m,n)=CC, 所以f(3,0)+f(2,1)+f(1,2)+f(0,3) =CC+CC+CC+CC=120. 14.已知n(n∈N*)的展開(kāi)式中所有項(xiàng)的二項(xiàng)式系數(shù)之和、系數(shù)之和分別為p,q,則p+64q的最小值為_(kāi)_____. 答案 16 解析 顯然p=2n.令x=1,得q=. 所以p+64q=2n+≥2=16, 當(dāng)且僅當(dāng)2n=, 即n=3時(shí)取等號(hào),此時(shí)p+64q的最小值為16. 15.(2018金華模擬)若(3-2x)10=a0+a1x+a2x2+a3x3+…+a10x10,則a1+2a2+3a3+4a4+…+10a10=________. 答案?。?0 解析 對(duì)原等式兩邊求導(dǎo),得-20(3-2x)9=a1+2a2x+3a3x2+…+10a10x9,令x=1,得a1+2a2+3a3+4a4+…+10a10=-20. 16.若n展開(kāi)式中前三項(xiàng)的系數(shù)和為163,求: (1)展開(kāi)式中所有x的有理項(xiàng); (2)展開(kāi)式中系數(shù)最大的項(xiàng). 解 易求得展開(kāi)式前三項(xiàng)的系數(shù)為1,2C,4C. 由題意得1+2C+4C=163,可得n=9. (1)設(shè)展開(kāi)式中的有理項(xiàng)為T(mén)k+1, 由Tk+1=C()9-kk= 又∵0≤k≤9,∴k=2,6. 故有理項(xiàng)為T(mén)3==144x3, (2)設(shè)展開(kāi)式中Tk+1項(xiàng)的系數(shù)最大,則 ∴≤k≤, 又∵k∈N,∴k=6, 故展開(kāi)式中系數(shù)最大的項(xiàng)為T(mén)7=5376.- 1.請(qǐng)仔細(xì)閱讀文檔,確保文檔完整性,對(duì)于不預(yù)覽、不比對(duì)內(nèi)容而直接下載帶來(lái)的問(wèn)題本站不予受理。
- 2.下載的文檔,不會(huì)出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請(qǐng)點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁(yè)顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開(kāi)word文檔。
- 特殊限制:
部分文檔作品中含有的國(guó)旗、國(guó)徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對(duì)作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 浙江專(zhuān)用2020版高考數(shù)學(xué)新增分大一輪復(fù)習(xí) 第十章 計(jì)數(shù)原理 10.3 二項(xiàng)式定理講義含解析 浙江 專(zhuān)用 2020 高考 數(shù)學(xué) 新增 一輪 復(fù)習(xí) 第十 計(jì)數(shù) 原理 二項(xiàng)式 定理 講義 解析
鏈接地址:http://m.jqnhouse.com/p-3935188.html