任務(wù)書(shū)題目:圓盤(pán)剪切機(jī)的設(shè)計(jì)任務(wù)起至日期: 2015 年 12 月 14 日至 2016 年 6 月 10 日 共 18 周一、課題的任務(wù)內(nèi)容設(shè)計(jì)內(nèi)容:1. 剪切機(jī)方案的設(shè)計(jì);2. 設(shè)計(jì)計(jì)算(包括強(qiáng)度和剛度計(jì)算) ;3. 控制系統(tǒng)設(shè)計(jì)二、原始條件及數(shù)據(jù):剪切帶鋼速度 V=1~3 m/s, 取 3 m/s; 剪切帶鋼強(qiáng)度 ≤600 MPa 取 600 MPa;b?剪切帶鋼厚度 h=0.5~2.5 mm;剪切帶輪寬度 B=700~1500 mm;剪刃的擺動(dòng)不超過(guò) 0.1 mm, 不平行度 0.01 mm;?上下剪刀的側(cè)間隙 0.05 mm, 重疊度 S=0~0.3 mm。??三、設(shè)計(jì)的技術(shù)要求(論文的研究要求):設(shè)計(jì)說(shuō)明書(shū)體現(xiàn)設(shè)計(jì)思路和具體的設(shè)計(jì)方法四、畢業(yè)設(shè)計(jì)(論文)應(yīng)完成的具體工作:A、 說(shuō)明書(shū)內(nèi)容(40~60 頁(yè))要有中英文摘要,關(guān)鍵詞,要注明頁(yè)碼,編寫(xiě)層次,數(shù)據(jù)出處,參考文獻(xiàn)、附錄,致謝B、圖紙。 (2-3 張 0#) (裝配圖、零件圖等)C、開(kāi)題報(bào)告(約 5 千中文字符)D、英文文獻(xiàn)翻譯(2 萬(wàn)英文字符或 5 千中文字符)軟硬件名稱、內(nèi)容及主要的技術(shù)指標(biāo)(可按以下類型選擇):計(jì)算機(jī)軟件 CAD圖 紙 2-3 張 0#電 路 板機(jī) 電 裝 置新材料制劑結(jié) 構(gòu) 模 型其 他五、查閱文獻(xiàn)要求及主要的參考文獻(xiàn):最少查閱 8 篇中文期刊文獻(xiàn),2 篇外文期刊文獻(xiàn)(不包括書(shū)和標(biāo)準(zhǔn)) ,最好是近 5 年的發(fā)表的。 六、進(jìn)度安排:(設(shè)計(jì)或論文各階段的要求,時(shí)間安排):12 月 14 日—1 月 22 日 查閱資料、畢業(yè)實(shí)習(xí)、開(kāi)題報(bào)告以及文獻(xiàn)翻譯等,5 周 1 月 23 日—3 月 25 日 結(jié)構(gòu)設(shè)計(jì)和方案的確定 3 月 26 日—4 月 17 日 設(shè)計(jì)計(jì)算(包括強(qiáng)度和剛度計(jì)算)4 月 18 日—4 月 30 日 控制系統(tǒng)設(shè)計(jì)5 月 1 日—5 月 20 日 繪制總裝配圖、零件圖 5 月 21 日—5 月 31 日 整理說(shuō)明書(shū) 6 月 1 日—6 月 5 日 準(zhǔn)備答辯 6 月 6 日—6 月 10 答辯指導(dǎo)教師: 李光霽 2015 年 12 月 25 日 審核意見(jiàn):教研室主任: 年 月 日High-temperrature tensile and wear behaviour of microalloyed medium carbon steelabstractpurpose-to provide new observations about dynamic strain ageing in medium carbon microalloyed steels which are used for automotive aplicationsesign/methodology/approach-the present work aims to provide theoretical and practical information to industries or researchers who maybe interested in the effects of dynamic strain ageing on mechanical properties of microalloyed steel.The sources are sorted into sections :introduction,experimental procedure results and discussion,conclusion.Findings-Microalloyed medium carbon steel was susceptible to dynamic strain ageing where serrated flow is observed at temperatures between 200and 350°C. In this temperature regime ultimate tensile strength and proof stress exhibit maximum valus,however,elongation to fracture showed a decrease until 250°C,after which it increased.Obove 350°C, a sharp decrease tensile strength and proof stress were observed.Abrasive wear resistance of the microalloyed medium carbon steel was also increased at temperatures between 200 and 350°C due to dynamic strain ageing.Research limitations/implications-A search of the literature indicated that although there is considerable volume of information related to dynamic strain ageing in mild steel or in low-carbon steel no extensive investigation has been made of dynamic strain ageing in microallyed steel due to the ease with nitrogen is combined AIN,VN,NBN,etc.which perhaps increase its implication.Practical implications-A very useful source of information for industries using or planning to produce microalloyed steels.Originality/valu-This paper fulfils an identified resource need and offers practical help to the industries.k eywords wear ,ageing(materials),s train measuement,tensile s trength,s teelPaper type Research paperIntrodution The development of microalloyed medium carbon steels has been one of the singificant advances in the 1970s(matlock et al.,2001).The main benefit of microalloyed steels lies in the prospect of important energy and cost savings in the manufacturing of forged components for automotive applications.In such steels,the strength levels and otherproperties achieved after cooling from hot working temperatures are reported tobe comparable with those obtained from conventional quenched and tempered steels.Microalloying or the use of small additions of elements,for example ,V,Nb,and Ti,in low-carbon steels has been successfully empoyed for large diameter pipelines,bridges and other construction applications.This has been extended to medium carbon steels for a variety of automotive engine and engineering applications.The microallying elements produce precipitation of carbonitrides in austenite,and the proeutectoid and pearlitic ferrite phases of the final microstructure to obtain grain refinement and precipitation strngthening.Vanadium microallying is commonly employed,owing to its higher solid solubility in austenite as compared with niobium or titanium that can produce a major strengthening component.If sufficient percentage of microallying elements such as V,Nb,Ti are not present,not all of the carbon and nitrides,therefore,microallying steel will show strain ageing due to interaction between free carbon and/or nitrogen with dislocatiions.of course there is interstitial free steels that rely on the absence of uncombined carbon and nitrogen for formability.hiwever,a sear ch of the literature has indicated that no extensive investigation has been carried out into dynamic strain ageing in microallyed steel.the aim of the present study is,therefore ,to determine the effects of the dynamic strain ageing on the high-temperature tensile properties of the microallyed medium carbon steel.The influence of high temperatures on wear performence of steel has also been investigated in oder to compare the findings obtained from hegh-temperature tensile tests.Experimental materials and procedureThe composition of the steel used in this investigation was FE-0.28C-0.30Si-1.4Mn-0.02P-0.01S-0.08V-0.03Al.The steel were received in the form of 36mm diameter billets.After roll forging at 1,180°C,the steel was firmly cooled to room temperature at a cooling rate of 27°C/min.Tensile specimens with gauge length of 26.6mmand diameters of 4.1 mm were manufactured in the temperature range of 25-450°C at a strain rate of 1.2X10ˉ3/s using an Instron universal testing machine,model 1115.Each specimen was held for approximately 15 min at the testing temperature before testing began.The temperature was controlled to within +2°C.After each test,data for load versus displacement were converted into engineering stress versus strain curves which were analysed to determine the proof stress at 0.2 per cent plastic deformation ,ultimate tensile strength and total elongation.Wear performance tests of microallyed medium carbon steel was carried out at temperatures beween 25 and 450°C using the metal-abrasive type wear test machine as shown in Figure 1.wear test specimens with length of 30 mm and tip diameter of 3 mm were heated to the test temperatures in an electrical resistance heater and all the specimens were held approximately 30 min befor the test .Wear performance test specimens were rubbed on 250 mesh SiC paper under a pressure of 6MPa with a sliding speed of 0.24 m/s.During the test care was taken to hold samples in contact with fresh abrasive grains.Total sliding distance on abrasive paper was determined as 11m.The results of wear test were quantified as the weight loss of the specimens measured with 0.1mg sensitivity.The examination of steel microstructure andworn surfaces of the specimens were done using optical and scanning electron microscopes,respectively.The optical examination of specimens was carried out using a Nicon microscope capble of magnifications between 5X and 400X.Scanning electron microscopy was also used to examine tensile frature and worn surfaces of the specimens representing the warious testing conditions.Results and discussionFigure 2 shows microstructure of the microallyed medium carbon steel in optical microscope.It is seen that steel consists of equiaxed grains in mean linear intercept grain sizes of 8μm.The measurement phase volume fraction also indicated that steel had 53 per cent ferrite for themicroallyed medium carbon steel,including proof stress at 0.2 per cent plastic deformation,UTS and percentage elongation to fracture.Itis noted that the the proof stress and UTS of the steel samples increased between 200 and 350°C.However,percentage elongation decreased slowly until 250°C,after which it increased steadily.The effects of temperature on tensile behaviour of microalloyed medium carbon steel is shown in Figure 3.With the increasing of temperature of deformation,strain hardening rate first increased and then serrated flow occured at 200°C.As the temperature increases to 300°C the frequency of serrations on the floe curves decreased,although the strain hardening rate increases slightly.Above 300°C,serration began to disappear from the curves.It is generally accepted that these effects are due to interaction between mobile dislocations and active interstitial solutes,such as carbon and nitrogen.As show in figure 3,the strain hardening rate and thus the flow stress for a given strain and the UTS were the properties most affected by dynamic strain ageing.Dynamic strain ageing is acccompanied by a large increase in the strain hardening index n in the relationship σ=kεn,where σ and ε are true stress and true strain,respectively.It has been show that there is a much greater increase in dislocation density for a given strain in the blue brittleness range than at room temperature and this effect is clearly responsible for much of the enhanced strain hardening rate.presumably dislocation become immobilised by solute pinning and fresh dislocations have continually to be formed to maintain the applied strain rate.It is generally accepted that carbon and nitrogen are the main elements responsible for dynamic strain ageing.The main differences between the strain ageing effects of carbon and nitrogen arise from their widely differing solubilities .The solubilities of carbon in ferrite is fairly low at 0-200°C compared to nitrogen.Therefore,carbon strain ageing at low temperatures is normally negliginle in slowly cooled steel.However,on ageing above 200°Cthere is an evidence that fine carbide particles can redissolve to produce extensive strain ageing.As first shown by Glen(1957)and confirmed by baird and jamieson that the presence of substitutional solutes with an affinitiy for carbon or nitrogen extend,the dynamic strain ageing up to higher temperature.The present results indicate that there is a strong interaction between dislocations and interstitial solutes (carbon) or solute pairs (M-C and V-C) which reduces the mobility of interstitial and shifts dynamic strain ageing to higher temperatures.Figure 4 shows the effect of test temperatures on the proof stress at 0.2 per cent plastic deformation,ultimate tensile strength and percentage elongation to gracture.It is evident that steel exhibibit an increase in proof stess and ultimate tendile strength between 200 and 350°C consistent with dynamic strain ageing.Several investigators indicated that strength decreased from room temperature to about 100°C,and then a slower decrease was observd in corresponding to about 275-300°C.Thereafter,the changes in flow stress are small or negligible.The abrasive wear test results at different temperatures of the microalloyed medium carbon steels are shown in Figure 5 where weight loss versus temperature.In general,there is a continuously increase in weight loss versus temperature up to 200°C.However ,steel samples showed minimum weight loss and maximum abrasion resistance between 200 and 350°C over which serrated yielding ocurred due to dynamic strain ageing.In this temperature regime the steel samples exhibited 11 per cent higher abrasion resistance compared to room temperature.This indicates that dynamic strain ageing caused an improvement on abrasion resistance.Figure 6 also shows worn suraces of samples which were characterised in terms of abrasive grooves and embedded abrasive grains.It is evident that the worn surface damage is heavy for the samples tested at temperature of 25and 400 °C. compared to 300°CThe evidence presented confirms the existence of dynamic strain ageing.The increased UTS and abrasion resistance between 200 and 350 °C. suggest that there is an interaction between dislocation and solute atoms or solute pairs which make dislocation movement more difficult and increase strain hardening.ConclusionsTensile tests and abrasive wear tests were carried out between 25 and 450 °C to examine the effects of the dynamic strain ageing on mechanical properties of microallyed medium carbon steels.The main conclusions from this study are as follows:1 Dynamic strain ageing occurs in tested steel during tensile testing in the temperature range 200-350°C at a strain rate of 1200/s.This phenomena has a considerable effect on the elevated temperature mechanical properties.2 The proof stress at 0.2 per cent plastic deformation and ultimate tensile strength of microallyed medium carbon steel increase with temperature and reaches a maximum at around 200-350°C before decreasing with further increase in temperature.In this temperature regime steel samples showed serrated yieding and lower ductility.These features could be attributed to dynamic strain ageing.3 The weight loss and macimum abrasion resistance were observed in between 200 and 350°C over which serrated yielding occurred.The inference can be draw,therefore,that dynamic strain ageing caused an improvement on abrasion resistance.4 There is a strong interaction between dislocations and interstitial solutes or solute pairs (Mn-C and V-C) which reduces the mobility of interstitial and cause dynamic strain ageing to occur at temperatures between 200 and 350°C. 含有微量合金中碳鋼的高溫抗張力和耐磨特性簡(jiǎn)介目的-為了提供被用來(lái)作為自動(dòng)化應(yīng)用的中碳合金鋼的動(dòng)態(tài)應(yīng)變時(shí)效的新的探測(cè)方法。設(shè)計(jì)/方法/處理-目前的工作目標(biāo)是為了動(dòng)態(tài)應(yīng)變可能時(shí)效的微量合金鋼的機(jī)械性能感興趣的工人或研究者提供理論和實(shí)踐信息。(信息源)被分成幾個(gè)部分:介紹,實(shí)踐過(guò)程,結(jié)果和討論,結(jié)論。發(fā)現(xiàn)-溫度在 200-350°C,微量合金鋼對(duì)動(dòng)態(tài)應(yīng)變時(shí)效是很敏感的。在這個(gè)溫度范圍內(nèi)展現(xiàn)的最大價(jià)值是極限張力和耐力。然而直到 250°C 時(shí)延長(zhǎng)的斷裂才減小,此后又增加。在 350°C 以上張力和耐力又急劇的減小。由于動(dòng)態(tài)應(yīng)變時(shí)效,在 200-350°C 之間,微量合金中碳鋼耐磨性也增加。研究的局限性/本質(zhì)-一本書(shū)中指出,雖然有大量關(guān)于中碳合金鋼動(dòng)態(tài)應(yīng)變時(shí)效的信息但動(dòng)態(tài)應(yīng)變已經(jīng)時(shí)效的中碳合金鋼由于很容易與氮結(jié)合成 AIN,VN,NBN 等,這就可能增加了它的本質(zhì)意義。 實(shí)踐意義-為了工廠使用或計(jì)劃生產(chǎn)微量合金鋼提供一條有用的信息資源。創(chuàng)新/價(jià)值-這篇文章對(duì)識(shí)別資源的需要和對(duì)工人的實(shí)踐提供幫助。關(guān)鍵字:磨損,時(shí)效,應(yīng)變測(cè)試,張力,鋼。文章類型:研究性文章序言在 20 世紀(jì) 70 年代,微量合金鋼的發(fā)展已經(jīng)是重大進(jìn)步之一。微量合金鋼的最主要優(yōu)點(diǎn)在于為重要能源的發(fā)展前景和自動(dòng)化應(yīng)用在制造業(yè)方面節(jié)省成本。在那樣的鋼制品里在從熱的工作溫度到冷卻所達(dá)到的程度和其它特征被用于與傳統(tǒng)淬火和回火鋼相比較。微量合金或部分小的附屬物已經(jīng)成功的被應(yīng)用于大直徑管道,橋和其他建筑物,例如;釩和鈦。這已經(jīng)擴(kuò)展到自動(dòng)化工程和自動(dòng)化應(yīng)用的中碳鋼。微量合金元素產(chǎn)生的碳化合物沉淀和先共析體以及最終的纖維組織的珠光鐵素體來(lái)達(dá)到晶化晶粒和聚集沉淀的目的。由于它在奧氏體中的高度固體可容性,釩合金通常被使用(與鈮和鈦相比產(chǎn)生大量的強(qiáng)化成分) 。如果有足夠的微量合金元素(如釩,鈮,鈦還未出現(xiàn)) 。并不是所有的碳和氮能夠被用來(lái)合成碳化物和氮化物。因此由于沒(méi)有碳和氮相互作用,微量合金鋼將表現(xiàn)出應(yīng)變時(shí)效。當(dāng)然,有的鋼在無(wú)碳和氮下成型。然而調(diào)查顯示,并沒(méi)對(duì)微量合金鋼動(dòng)態(tài)應(yīng)變時(shí)效進(jìn)行廣泛的研究。目前的研究目標(biāo)取決于微量合金中碳鋼的高溫張力特性,動(dòng)態(tài)應(yīng)變時(shí)效的效果。為了與從高溫張力測(cè)試所獲得的發(fā)現(xiàn)相比較,高溫下,鋼的耐磨性也已經(jīng)被研究。實(shí)驗(yàn)材料與程序在這次的調(diào)查研究中鋼的成分如下:鐵(0.28%)碳(0.3% )硅(1.4% )錳(0.02%)硫(0.01% )釩(0.08% )鋁(0.03%) ;鋼坯直徑是 36 毫米。在 1180°C 翻轉(zhuǎn)滾動(dòng)后,鋼坯在室溫下以 27°C/分速率下冷卻,張力樣品以長(zhǎng) 26.6 毫米和直徑為 4.1 毫米縱向制造。實(shí)驗(yàn)在拉伸強(qiáng)度試驗(yàn)機(jī)上進(jìn)行。起溫度在 25-450°C 范圍內(nèi),應(yīng)變率為 0.0012/秒每種樣品在實(shí)驗(yàn)開(kāi)始之前被放置大約十五分鐘來(lái)達(dá)到實(shí)驗(yàn)溫度,溫度被控制在-2°C-+2°C 之內(nèi).在每個(gè)實(shí)驗(yàn)之后所得數(shù)據(jù)被轉(zhuǎn)換成工程壓力.應(yīng)變函數(shù)曲線被用來(lái)分析來(lái)決定 0.2%塑性變形抗力,最大的張力和總功伸長(zhǎng)量.微量合金中碳鋼的耐磨性實(shí)驗(yàn)溫度范圍是 25-450°C。使用磨損型實(shí)驗(yàn)機(jī)顯示,耐磨實(shí)驗(yàn)是以長(zhǎng) 30 毫米尖端直徑為 3 毫米在電阻上被加熱到實(shí)驗(yàn)溫度。每種樣品 被放置大約 30 分鐘,在 6Mp 壓力下耐模性試驗(yàn)樣品大約被磨 250 個(gè)網(wǎng)格。在試驗(yàn)期間垂直移動(dòng)樣品目的是為了保持樣品與被磨損顆粒接觸。在磨損處總共滑動(dòng)距離為 11 米,耐磨性實(shí)驗(yàn)結(jié)果是樣品損耗重量為 0.1mg。用光學(xué)顯微鏡和電子顯微鏡來(lái)分別檢查鋼的纖維組織和表面損壞的樣品。使用放大率為 5 倍-400 倍色尼科爾偏光鏡來(lái)檢查樣本,電子顯微鏡也用來(lái)檢查裂紋和表面損壞的樣本代表各種實(shí)驗(yàn)條件。結(jié)果和結(jié)論在光學(xué)顯微鏡中圖 2 顯示了微量合金中碳鋼的纖維組織。在測(cè)量一小部分也發(fā)現(xiàn)此種鋼有 53%的亞鐵鹽和 47%的珠光體,表 1 給出了對(duì)于微量合金中碳鋼的張力測(cè)試結(jié)果包括每 0.2%塑性變形壓力校樣極限抗拉強(qiáng)度和裂紋伸長(zhǎng)量。在 200-350°C 之間鋼樣品的校樣壓力和極限抗拉強(qiáng)度增加。然而到 250°C 伸長(zhǎng)量百分比慢慢減小,爾后又穩(wěn)定增加。圖 3 顯示了溫度對(duì)微量合金中碳鋼張力特性影響隨著溫度的增加,變形,張力緩慢增加,在 200°C 時(shí)開(kāi)始有鋸齒狀裂紋出現(xiàn)。在溫度增加到 300°C 時(shí),鋸齒狀的頻率變形曲線減小盡管張力增加相當(dāng)緩慢,在 300°C 以上,鋸齒形狀開(kāi)始從曲線上小消失,由此表明出現(xiàn)這種結(jié)果是由于位錯(cuò)和節(jié)點(diǎn)溶質(zhì)相互作用造成的,如碳和氮。圖 3 表明由于動(dòng)態(tài)張力時(shí)效而影響了張力和極限抗拉強(qiáng)度,隨著機(jī)械硬化增加,動(dòng)態(tài)應(yīng)變時(shí)效也增加,二者的關(guān)系是:б=Kε n。б 和 ε 分別是真實(shí)的壓強(qiáng)和應(yīng)變。已經(jīng)表明低溫比室溫位錯(cuò)密度顯著增加,這些影響都是有機(jī)械硬化增加引起的,大概是由于位錯(cuò)停止,新的位錯(cuò)繼續(xù)形成來(lái)維持外加的應(yīng)變率。通常碳和氮是動(dòng)態(tài)應(yīng)變時(shí)效的主要元素,碳和氮對(duì)應(yīng)變時(shí)效的主要差別是兩者溶解度差別很大。在亞鐵鹽中,與氮比較在 0-200°C 之間的溶解度相當(dāng)?shù)?。在溫度很低的冷鐵中,碳的應(yīng)變時(shí)效通常是極小的。然而是 200°C 以上,有證據(jù)表明碳化物顆粒能重新熔化而產(chǎn)生廣泛的應(yīng)變時(shí)效。1957 年首先被格林提出,而在 1966 年被伯德和瞻姆斯證實(shí):高溫下,以碳或氮吸引力存在的被取代的溶質(zhì)擴(kuò)展到動(dòng)態(tài)應(yīng)變時(shí)效。目前的結(jié)果表明對(duì)于高溫下動(dòng)態(tài)應(yīng)變時(shí)效變動(dòng)的位錯(cuò)和填隙溶液的強(qiáng)烈相互作用。圖 4 表明在 0.2%彈性變形的校樣壓力下張力和裂紋有所延長(zhǎng)。有證據(jù)表明,在 200-350°C 之間,鋼的校樣壓力與極限張力以及動(dòng)態(tài)應(yīng)變時(shí)效一致。幾個(gè)調(diào)查者指出:從室溫到大約 100°C 溫度下力減小,之后減小的很慢(大約在 275-300°C 之間動(dòng)態(tài)應(yīng)變時(shí)效一致) 。圖 5 表明微量合金中碳鋼在不同的溫度下由于磨損造成重量損耗的溫度函數(shù)線。通常隨著測(cè)試溫度到 200°C,重量損耗持續(xù)增加。在 200-350°C 之間重量損耗最小,溫度最大(由于動(dòng)態(tài)應(yīng)變時(shí)效的鋼出現(xiàn)鋸齒狀彎曲) 。在這種溫度下,與室溫相比樣品鋼磨損降低11%。這表明動(dòng)態(tài)應(yīng)變時(shí)效引起了對(duì)抵制磨損程度的提高。圖 6 表明以磨損的槽的和嵌入的磨損顆粒方時(shí)給的樣品表面磨損特征。有證據(jù)表明,與在 300°C 比較在 250°C 和 400°C 溫度下測(cè)試的樣本。表面磨損非常嚴(yán)重。目前的證據(jù)已經(jīng)證實(shí)了動(dòng)態(tài)應(yīng)變時(shí)效的存在。在 200°C 和 350°C 極限抗拉強(qiáng)度和抵制磨損程度表明:使位錯(cuò)移動(dòng)更加困難和應(yīng)變?cè)黾拥奈诲e(cuò)和溶解的顆粒有相互作用。結(jié)論:在 25-450°C 之間的張力測(cè)試和耐磨實(shí)驗(yàn)檢查微量合金中碳鋼的動(dòng)態(tài)應(yīng)變時(shí)效機(jī)械特性效果。從這個(gè)研究中得出的主要結(jié)論如下:1:在 200-350°C 溫度范圍內(nèi)的張力實(shí)驗(yàn)中動(dòng)態(tài)應(yīng)變時(shí)效以 1.2X10-3/S 的應(yīng)變率發(fā)生,這種現(xiàn)已經(jīng)有一個(gè)可以考慮的效果(用以提高機(jī)械特性)2:以 0.2%塑性變形的樣品壓力和微量合金中碳鋼極限的張力。隨溫度增加到一個(gè)最大值在 200-350°C 在碳減小前進(jìn)一步增加。在這個(gè)溫度狀態(tài)下樣品鋼表現(xiàn)鋸齒狀彎曲和低的柔性。這些特征可歸因于動(dòng)態(tài)應(yīng)變時(shí)效。3:在 200°C 和 350°C 時(shí),重量損耗,磨損穩(wěn)定性最大,同時(shí)鋸齒彎曲出現(xiàn),因此可以推斷動(dòng)態(tài)應(yīng)變時(shí)效引起了磨損穩(wěn)定性的提高。4:位錯(cuò)與填隙溶液強(qiáng)烈的相互作用,這就可以減少節(jié)點(diǎn)的移動(dòng)。在250-350°C 之間, (這種作用)引起了動(dòng)態(tài)應(yīng)變時(shí)效。