高考數學 考前三個月復習沖刺 專題8 第40練 歸納推理與類比推理課件 理.ppt
《高考數學 考前三個月復習沖刺 專題8 第40練 歸納推理與類比推理課件 理.ppt》由會員分享,可在線閱讀,更多相關《高考數學 考前三個月復習沖刺 專題8 第40練 歸納推理與類比推理課件 理.ppt(46頁珍藏版)》請在裝配圖網上搜索。
專題8概率與統(tǒng)計 第40練歸納推理與類比推理 題型分析 高考展望 歸納推理與類比推理是新增內容 在高考中 常以選擇題 填空題的形式考查 題目難度不大 只要掌握合情推理的基礎理論知識和基本方法即可解決 ??碱}型精析 高考題型精練 題型一利用歸納推理求解相關問題 題型二利用類比推理求解相關問題 ??碱}型精析 題型一利用歸納推理求解相關問題 例1 1 2015 陜西 觀察下列等式 據此規(guī)律 第n個等式可為 解析等式左邊的特征 第1個等式有2項 第2個有4項 第3個有6項 且正負交錯 故第n個等式左邊有2n項且正負交錯 等式右邊的特征 第1個有1項 第2個有2項 第3個有3項 2 如圖所示 是某小朋友在用火柴拼圖時呈現的圖形 其中第1個圖形用了3根火柴 第2個圖形用了9根火柴 第3個圖形用了18根火柴 則第2014個圖形用的火柴根數為 A 2012 2015B 2013 2014C 2013 2015D 3021 2015 解析由題意 第1個圖形需要火柴的根數為3 1 第2個圖形需要火柴的根數為3 1 2 第3個圖形需要火柴的根數為3 1 2 3 由此 可以推出 第n個圖形需要火柴的根數為3 1 2 3 n 所以第2014個圖形所需火柴的根數為3 1 2 3 2014 答案D 點評歸納推理的三個特點 1 歸納推理的前提是幾個已知的特殊對象 歸納所得到的結論是未知的一般現象 該結論超越了前提所包含的范圍 2 由歸納推理得到的結論具有猜測的性質 結論是否準確 還需要經過邏輯推理和實踐檢驗 因此歸納推理不能作為數學證明的工具 3 歸納推理是一種具有創(chuàng)造性的推理 通過歸納推理得到的猜想 可以作為進一步研究的起點 幫助發(fā)現問題和提出問題 變式訓練1 2014 陜西 觀察分析下表中的數據 猜想一般凸多面體中F V E所滿足的等式是 解析觀察F V E的變化得F V E 2 F V E 2 題型二利用類比推理求解相關問題 例2如圖所示 在平面上 用一條直線截正方形的一個角 截下的是一個直角三角形 有勾股定理c2 a2 b2 空間中的正方體 用一平面去截正方體的一角 截下的是一個三條側棱兩兩垂直的三棱錐 若這三個兩兩垂直的側面的面積分別為S1 S2 S3 截面面積為S 類比平面中的結論有 解析建立從平面圖形到空間圖形的類比 在由平面幾何的性質類比推理空間立體幾何的性質時 注意平面幾何中點的性質可類比推理空間幾何中線的性質 平面幾何中線的性質可類比推理空間幾何中面的性質 平面幾何中面的性質可類比推理空間幾何中體的性質 所以三角形類比空間中的三棱錐 線段的長度類比圖形的面積 于是作出猜想 點評類比推理的一般步驟 1 定類 即找出兩類對象之間可以確切表述的相似特征 2 推測 即用一類對象的已知特征去推測另一類對象的特征 從而得出一個猜想 3 檢驗 即檢驗猜想的正確性 要將類比推理運用于簡單推理之中 在不斷的推理中提高自己的觀察 歸納 類比能力 解析設正四面體的每個面的面積是S 高是h 內切球半徑為R 答案C 高考題型精練 1 2 3 4 5 6 7 8 9 10 11 12 高考題型精練 1 2 3 4 5 6 7 8 9 10 11 12 解析正四面體內任一點與四個面組成四個三棱錐 它們的體積之和為正四面體的體積 設點到四個面的距離分別為h1 h2 h3 h4 高考題型精練 1 2 3 4 5 6 7 8 9 10 11 12 答案A 高考題型精練 1 2 3 4 5 6 7 8 9 10 11 12 A nnB n2C 3nD 2n 高考題型精練 1 2 3 4 5 6 7 8 9 10 11 12 解析根據已知 續(xù)寫一個不等式 由此可得a nn 故選A 答案A 高考題型精練 1 2 3 4 5 6 7 8 9 10 11 12 3 觀察下列各式 a b 1 a2 b2 3 a3 b3 4 a4 b4 7 a5 b5 11 則a10 b10等于 A 28B 76C 123D 199解析觀察可得各式的值構成數列1 3 4 7 11 其規(guī)律為從第三項起 每項等于其前相鄰兩項的和 所求值為數列中的第十項 繼續(xù)寫出此數列為1 3 4 7 11 18 29 47 76 123 第十項為123 即a10 b10 123 C 高考題型精練 1 2 3 4 5 6 7 8 9 10 11 12 4 2014 北京 學生的語文 數學成績均被評定為三個等級 依次為 優(yōu)秀 合格 不合格 若學生甲的語文 數學成績都不低于學生乙 且其中至少有一門成績高于乙 則稱 學生甲比學生乙成績好 如果一組學生中沒有哪位學生比另一位學生成績好 并且不存在語文成績相同 數學成績也相同的兩位學生 那么這組學生最多有 A 2人B 3人C 4人D 5人 高考題型精練 1 2 3 4 5 6 7 8 9 10 11 12 解析假設滿足條件的學生有4位及4位以上 設其中4位同學分別為甲 乙 丙 丁 則4位同學中必有兩個人語文成績一樣 且這兩個人數學成績不一樣 或4位同學中必有兩個數學成績一樣 且這兩個人語文成績不一樣 那么這兩個人中一個人的成績比另一個人好 故滿足條件的學生不能超過3人 當有3位學生時 用A B C表示 優(yōu)秀 合格 不合格 則滿足題意的有AC CA BB 所以最多有3人 答案B 高考題型精練 1 2 3 4 5 6 7 8 9 10 11 12 高考題型精練 1 2 3 4 5 6 7 8 9 10 11 12 解析從平面圖形類比空間圖形 從二維類比三維 如圖 設正四面體的棱長為a E為等邊三角形ABC的中心 O為內切球與外接球球心 設OA R OE r 則OA2 AE2 OE2 高考題型精練 1 2 3 4 5 6 7 8 9 10 11 12 答案C 高考題型精練 1 2 3 4 5 6 7 8 9 10 11 12 高考題型精練 1 2 3 4 5 6 7 8 9 10 11 12 解析若 an 是等差數列 答案D 高考題型精練 1 2 3 4 5 6 7 8 9 10 11 12 7 仔細觀察下面 和 的排列規(guī)律 若依此規(guī)律繼續(xù)下去 得到一系列的 和 那么在前120個 和 中 的個數是 解析進行分組 高考題型精練 1 2 3 4 5 6 7 8 9 10 11 12 易知f 14 119 f 15 135 故n 14 答案14 高考題型精練 1 2 3 4 5 6 7 8 9 10 11 12 8 古希臘畢達哥拉斯學派的數學家研究過各種多邊形數 如三角形數1 3 6 10 第n個三角形數為 記第n個k邊形數為N n k k 3 以下列出了部分k邊形數中第n個數的表達式 正方形數N n 4 n2 高考題型精練 1 2 3 4 5 6 7 8 9 10 11 12 六邊形數N n 6 2n2 n 可以推測N n k 的表達式 由此計算N 10 24 高考題型精練 1 2 3 4 5 6 7 8 9 10 11 12 解析由N n 4 n2 N n 6 2n2 n 可以推測 1100 100 1000 答案1000 高考題型精練 1 2 3 4 5 6 7 8 9 10 11 12 高考題型精練 1 2 3 4 5 6 7 8 9 10 11 12 高考題型精練 1 2 3 4 5 6 7 8 9 10 11 12 10 觀察下列等式12 112 22 312 22 32 612 22 32 42 10 照此規(guī)律 第n個等式可為 高考題型精練 1 2 3 4 5 6 7 8 9 10 11 12 解析觀察等式左邊的式子 每次增加一項 故第n個等式左邊有n項 指數都是2 且正 負相間 所以等式左邊的通項為 1 n 1n2 等式右邊的值的符號也是正 負相間 其絕對值分別為1 3 6 10 15 21 設此數列為 an 則a2 a1 2 a3 a2 3 a4 a3 4 a5 a4 5 an an 1 n 各式相加得an a1 2 3 4 n 高考題型精練 1 2 3 4 5 6 7 8 9 10 11 12 高考題型精練 1 2 3 4 5 6 7 8 9 10 11 12 照此規(guī)律 第五個不等式為 高考題型精練 1 2 3 4 5 6 7 8 9 10 11 12 解析觀察每行不等式的特點 每行不等式左端最后一個分數的分母與右端值的分母相等 且每行右端分數的分子構成等差數列 高考題型精練 1 2 3 4 5 6 7 8 9 10 11 12 高考題型精練 1 2 3 4 5 6 7 8 9 10 11 12 高考題型精練 1 2 3 4 5 6 7 8 9 10 11 12 高考題型精練 1 2 3 4 5 6 7 8 9 10 11 12- 配套講稿:
如PPT文件的首頁顯示word圖標,表示該PPT已包含配套word講稿。雙擊word圖標可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設計者僅對作品中獨創(chuàng)性部分享有著作權。
- 關 鍵 詞:
- 高考數學 考前三個月復習沖刺 專題8 第40練 歸納推理與類比推理課件 高考 數學 考前 三個月 復習 沖刺 專題 40 歸納推理 類比 推理 課件
裝配圖網所有資源均是用戶自行上傳分享,僅供網友學習交流,未經上傳用戶書面授權,請勿作他用。
鏈接地址:http://m.jqnhouse.com/p-5622338.html