河北省2019年中考數(shù)學(xué)總復(fù)習(xí) 第六單元 圓 課時(shí)訓(xùn)練26 與圓有關(guān)的計(jì)算練習(xí).doc
《河北省2019年中考數(shù)學(xué)總復(fù)習(xí) 第六單元 圓 課時(shí)訓(xùn)練26 與圓有關(guān)的計(jì)算練習(xí).doc》由會(huì)員分享,可在線(xiàn)閱讀,更多相關(guān)《河北省2019年中考數(shù)學(xué)總復(fù)習(xí) 第六單元 圓 課時(shí)訓(xùn)練26 與圓有關(guān)的計(jì)算練習(xí).doc(12頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
課時(shí)訓(xùn)練(二十六) 與圓有關(guān)的計(jì)算 (限時(shí):50分鐘) |夯實(shí)基礎(chǔ)| 1.120的圓心角所對(duì)的弧長(zhǎng)是6π,則此弧所在圓的半徑是 ( ) A.3 B.4 C.9 D.18 2.[xx黃石] 如圖K26-1,AB是☉O的直徑,點(diǎn)D為☉O上一點(diǎn),且∠ABD=30,BO=4,則BD的長(zhǎng)為 ( ) 圖K26-1 A.23π B.43π C.2π D.83π 3.[xx臺(tái)灣] 如圖K26-2,△ABC中,D為BC的中點(diǎn),以D為圓心,BD長(zhǎng)為半徑畫(huà)弧交AC于E點(diǎn),若∠A=60,∠ABC=100,BC=4,則扇形BDE的面積為 ( ) 圖K26-2 A.13π B.23π C.49π D.59π 4.[xx天門(mén)] 一個(gè)圓錐的側(cè)面積是底面積的2倍,則該圓錐側(cè)面展開(kāi)圖的圓心角的度數(shù)是 ( ) A.120 B.180 C.240 D.300 5.如圖K26-3,在55的正方形網(wǎng)格中,每個(gè)小正方形的邊長(zhǎng)都為1,點(diǎn)A,B,C均為格點(diǎn),則扇形ABC中BC的長(zhǎng)等于 ( ) 圖K26-3 A.2π B.3π C.4π D.172π 6. [xx綿陽(yáng)] 蒙古包可近似地看作由圓錐和圓柱組成,若用毛氈搭建一個(gè)底面圓面積為25π m2,圓柱高為3 m,圓錐高為 2 m的蒙古包,則需要毛氈的面積是 ( ) A.(30+529)π m2 B.40π m2 C.(30+521)π m2 D.55π m2 7.[xx廣安] 如圖K26-4,已知☉O的半徑是2,點(diǎn)A,B,C在☉O上,若四邊形OABC為菱形,則圖中陰影部分面積為 ( ) 圖K26-4 A.23π-23 B.23π-3 C.43π-23 D.43π-3 8.如圖K26-5,在矩形ABCD中,已知AB=4,BC=3,矩形ABCD在直線(xiàn)l上繞其右下角的頂點(diǎn)B向右旋轉(zhuǎn)90至圖①位置,再繞右下角的頂點(diǎn)繼續(xù)向右旋轉(zhuǎn)90至圖②位置……以此類(lèi)推,這樣連續(xù)旋轉(zhuǎn)xx次后,頂點(diǎn)A在整個(gè)旋轉(zhuǎn)過(guò)程中所經(jīng)過(guò)的路程之和是 ( ) 圖K26-5 A.xxπ B.3019.5π C.3024π D.3026π 9.[xx昆明] 如圖K26-6,正六邊形ABCDEF的邊長(zhǎng)為1,以點(diǎn)A為圓心,AB的長(zhǎng)為半徑,作扇形ABF,則圖中陰影部分的面積為 (結(jié)果保留根號(hào)和π). 圖K26-6 10.[xx鹽城] 如圖K26-7,圖①是由若干個(gè)相同的圖形(圖②)組成的美麗圖案的一部分,圖②中,圖形的相關(guān)數(shù)據(jù):半徑OA=2 cm,∠AOB=120.則圖②的周長(zhǎng)為 cm(結(jié)果保留π). 圖K26-7 11.[xx梧州] 如圖K26-8,圓錐側(cè)面展開(kāi)得到扇形,此扇形半徑CA=6,圓心角∠ACB=120,則此圓錐高OC的長(zhǎng)度是 . 圖K26-8 12.[xx云南] 如圖K26-9,已知AB是☉O的直徑,C是☉O上的點(diǎn),點(diǎn)D在A(yíng)B的延長(zhǎng)線(xiàn)上,∠BCD=∠BAC. 圖K26-9 (1)求證:CD是☉O的切線(xiàn); (2)若∠D=30,BD=2,求圖中陰影部分的面積. 13.[xx滄州模擬] 如圖K26-10,半圓O的直徑AB=6,弦CD的長(zhǎng)為3,點(diǎn)C,D在A(yíng)B上運(yùn)動(dòng),D點(diǎn)在A(yíng)C上且不與A點(diǎn)重合,但C點(diǎn)可與B點(diǎn)重合. 圖K26-10 (1)當(dāng)AD的長(zhǎng)=34π時(shí),求BC的長(zhǎng); (2)取CD的中點(diǎn)M,在CD運(yùn)動(dòng)的過(guò)程中,求點(diǎn)M到AB的距離的最大值. |拓展提升| 14.[xx安順] 如圖K26-11,C為半圓內(nèi)一點(diǎn),O為圓心,直徑AB長(zhǎng)為2 cm,∠BOC=60,∠BCO=90,將△BOC繞圓心O逆時(shí)針旋轉(zhuǎn)至△BOC,點(diǎn)C在OA上,則邊BC掃過(guò)區(qū)域(圖中陰影部分)的面積為 cm2. 圖K26-11 15.[xx濰坊] 如圖K26-12,點(diǎn)A1的坐標(biāo)為(2,0),過(guò)點(diǎn)A1作x軸的垂線(xiàn)交直線(xiàn)l:y=3x于點(diǎn)B1,以原點(diǎn)O為圓心,OB1的長(zhǎng)為半徑畫(huà)弧交x軸正半軸于點(diǎn)A2;再過(guò)點(diǎn)A2作x軸的垂線(xiàn)交直線(xiàn)l于點(diǎn)B2,以原點(diǎn)O為圓心,OB2的長(zhǎng)為半徑畫(huà)弧交x軸正半軸于點(diǎn)A3;….按此作法進(jìn)行下去,則的長(zhǎng)是 . 圖K26-12 16.[xx襄陽(yáng)] 如圖K26-13,AB是☉O的直徑,AM和BN是☉O的兩條切線(xiàn),E為☉O上一點(diǎn),過(guò)點(diǎn)E作直線(xiàn)DC分別交AM,BN于點(diǎn)D,C,且CB=CE. 圖K26-13 (1)求證:DA=DE; (2)若AB=6,CD=43,求圖中陰影部分的面積. 17.[xx河北25題節(jié)選] 如圖K26-14,半圓O的直徑AB=4,以長(zhǎng)為2的弦PQ為直徑,向點(diǎn)O方向作半圓M,其中P點(diǎn)在A(yíng)Q上且不與A點(diǎn)重合,但Q點(diǎn)可與B點(diǎn)重合. 發(fā)現(xiàn):AP的長(zhǎng)與QB的長(zhǎng)之和為定值l,求l. 探究:當(dāng)半圓M與AB相切時(shí),求AP的長(zhǎng). 注:結(jié)果保留π,cos35=63,cos55=33 圖K26-14 參考答案 1.C 2.D 3.C [解析] ∵∠A=60,∠ABC=100,∴∠C=180-60-100=20. ∵DE=DC,∴∠DEC=∠C=20,∴∠BDE=∠C+∠DEC=40,∴S扇形DBE=40π22360=49π. 故選C. 4.B [解析] 設(shè)母線(xiàn)長(zhǎng)為R,底面半徑為r,∴底面周長(zhǎng)=2πr,底面面積=πr2,側(cè)面面積=πrR,∵側(cè)面積是底面積的2倍,∴2πr2=πrR,∴R=2r,設(shè)圓心角為n,則nπR180=2πr=πR,解得n=180,故選B. 5.D [解析] 在△ACE與△BAD中,CE=AD=4,∠E=∠D=90,AE=BD=1,∴△ACE≌△BAD(SAS),∴∠ECA=∠BAD,∵∠ECA+∠CAE=90,∴∠CAE+∠BAD=90,∴∠CAB=90, ∵AC=AB=42+12=17,∴扇形ABC中BC的長(zhǎng)=90π17180=172π,故選D. 6.A [解析] 設(shè)底面圓的半徑為R,則πR2=25π,解得R=5,圓錐的母線(xiàn)長(zhǎng)=22+52=29, 所以圓錐的側(cè)面積=π529=529π;圓柱的側(cè)面積=2π53=30π, 所以需要毛氈的面積=(30π+529π)m2.故選A. 7.C [解析] 連接OB和AC交于點(diǎn)D,如圖所示. ∵圓的半徑為2,∴OB=OA=OC=2,又四邊形OABC是菱形,∴OB⊥AC,OD=12OB=1, 在Rt△COD中利用勾股定理可知: CD=22-12=3,∴AC=2CD=23, ∵sin∠COD=CDOC=32, ∴∠COD=60,∠AOC=2∠COD=120, ∴S菱形ABCO=12OBAC=12223=23,S扇形AOC=120π22360=4π3, 則圖中陰影部分面積為S扇形AOC-S菱形ABCO=43π-23,故選C. 8.D [解析] 第一次旋轉(zhuǎn)點(diǎn)A經(jīng)過(guò)的路程是90π4180=2π,第二次旋轉(zhuǎn)點(diǎn)A經(jīng)過(guò)的路程是90π5180=52π,第三次旋轉(zhuǎn)點(diǎn)A經(jīng)過(guò)的路程是90π3180=32π,第四次旋轉(zhuǎn)點(diǎn)A經(jīng)過(guò)的路程是0,第五次旋轉(zhuǎn)點(diǎn)A經(jīng)過(guò)的路程是90π4180=2π,…,以此類(lèi)推,每旋轉(zhuǎn)四次一循環(huán),頂點(diǎn)A旋轉(zhuǎn)四次經(jīng)過(guò)的路程為2π+52π+32π=6π,而xx4=504……1,∴這樣連續(xù)旋轉(zhuǎn)xx次后,頂點(diǎn)A在整個(gè)旋轉(zhuǎn)過(guò)程中所經(jīng)過(guò)的路程之和是6π504+2π=3026π.故選D. 9.332-13π [解析] 由于正六邊形的每一個(gè)內(nèi)角的度數(shù)=(6-2)1806=120,所以S陰影=S正六邊形ABCDEF-S扇形ABF=63412-120360π12=332-13π. 10.8π3 [解析] ∵半徑OA=2 cm,∠AOB=120,∴AB的長(zhǎng)=120π2180=4π3,AO的長(zhǎng)+OB的長(zhǎng)=4π3,∴題圖②的周長(zhǎng)=4π3+4π3=8π3(cm). 11.42 [解析] 設(shè)圓錐底面圓的半徑為r,∵AC=6,∠ACB=120,∴l(xiāng)AB=120π6180=2πr,∴r=2,即OA=2,在Rt△AOC中,OA=2,AC=6,根據(jù)勾股定理得,OC=AC2-OA2=42,故答案為42. 12.[解析] (1)連接OC,證明OC⊥CD.(2)先計(jì)算出扇形OAC的面積以及△OAC的面積,再利用S陰影=S扇形OAC-S△OAC求解. 解:(1)證明:連接OC. ∵AB是☉O的直徑, ∴∠ACB=90,即∠ACO+∠OCB=90. ∵OA=OC, ∴∠ACO=∠A. ∵∠BCD=∠A, ∴∠ACO=∠BCD, ∴∠BCD+∠OCB=90,即∠OCD=90, ∴OC⊥CD, ∴CD是☉O的切線(xiàn). (2)∵∠D=30,∠OCD=90, ∴∠BOC=60,OD=2OC, ∴∠AOC=120,∠A=30. 設(shè)☉O的半徑為x,則OB=OC=x, ∴x+2=2x,解得x=2. 過(guò)點(diǎn)O作OE⊥AC,垂足為點(diǎn)E,則AE=CE, 在Rt△OEA中,OE=12OA=1,AE=AO2-OE2=22-12=3, ∴AC=23, ∴S陰影=S扇形OAC-S△OAC=120π22360-12231=43π-3. 13.解:(1)連接OD,OC, ∵CD=OC=OD=3,∴△CDO是等邊三角形, ∴∠COD=60, ∴CD的長(zhǎng)=60π3180=π. 又∵半圓弧的長(zhǎng)度為:126π=3π, ∴BC的長(zhǎng)=3π-π-3π4=5π4. (2)過(guò)點(diǎn)M作ME⊥AB于點(diǎn)E,連接OM, 在CD運(yùn)動(dòng)的過(guò)程中,CD=3, 由垂徑定理可知:DM=32, 由勾股定理可知:OM=OD2-DM2=332, 由勾股定理可知:ME2=OM2-OE2, 若ME取最大值,則只需要OE最小即可,令OE=0,此時(shí)ME=OM=332, 即點(diǎn)M到AB的距離的最大值為332. 14.14π [解析] ∵∠BOC=60,△BOC是△BOC繞圓心O逆時(shí)針旋轉(zhuǎn)得到的, ∴∠BOC=60,△BCO≌△BCO, ∴∠BOC=60,∠CBO=30,∴∠BOB=120, ∵AB=2 cm,∴OB=1 cm,OC=12 cm,∴BC=32 cm,∴S扇形BOB=120π12360=13π,S扇形COC=120π14360=π12,∴陰影部分面積=S扇形BOB+S△BCO-S△BCO-S扇形COC=S扇形BOB-S扇形COC=13π-π12=14π.故答案為:14π. 15.22019π3 [解析] 由題意可知點(diǎn)B1的坐標(biāo)為(2,23),∵以原點(diǎn)O為圓心,OB1長(zhǎng)為半徑畫(huà)弧交x軸于點(diǎn)A2,∴OA2=OB1,∴OA2=22+(23)2=4,點(diǎn)A2的坐標(biāo)為(4,0),同理可求得B2的坐標(biāo)為(4,43),故點(diǎn)A3的坐標(biāo)為(8,0),B3(8,83),以此類(lèi)推便可求出點(diǎn)A2019的坐標(biāo)為(22019,0),則A2019B2018的長(zhǎng)是60π22019180=22019π3. 16.解:(1)證明:連接OE,OC, ∵BN切☉O于點(diǎn)B,∴∠OBN=90. ∵OE=OB,OC=OC,CE=CB, ∴△OEC≌△OBC,∴∠OEC=∠OBC=90, ∴CD是☉O的切線(xiàn). ∵AD切☉O于點(diǎn)A,∴DA=DE. (2)過(guò)點(diǎn)D作DF⊥BC于點(diǎn)F,則四邊形ABFD是矩形, ∴AD=BF,DF=AB=6.∴DC=BC+AD=43. ∵FC=DC2-DF2=23,∴BC-AD=23, ∴BC=33. 在Rt△OBC中,tan∠BOC=BCBO=3, ∴∠BOC=60. ∵△OEC≌△OBC,∴∠BOE=2∠BOC=120. ∴S陰影部分=S四邊形BCEO-S扇形OBE=212BCOB-120360πOB2=93-3π. 17.解:發(fā)現(xiàn):如圖①,連接OP,OQ, ∵AB=4,∴OP=OQ=2, ∵PQ=2,∴△OPQ是等邊三角形, ∴∠POQ=60,∴PQ的長(zhǎng)=60π2180=23π, 又∵AB的長(zhǎng)為:12π4=2π, ∴AP的長(zhǎng)+QB的長(zhǎng)=2π-23π=43π,∴l(xiāng)=43π. 探究:設(shè)切點(diǎn)為C,當(dāng)半圓M與AB相切時(shí),此時(shí),MC=1, 如圖②,當(dāng)點(diǎn)C在線(xiàn)段OA上時(shí),連接OM,OP,MC, 在Rt△POM中,OM=OP2-PM2=3. 在Rt△OCM中,由勾股定理可求得:OC=2, ∴cos∠AOM=OCOM=63,∴∠AOM=35. ∵∠POM=30,∴∠AOP=∠AOM-∠POM=5, ∴AP的長(zhǎng)=5π2180=π18; 如圖③,當(dāng)點(diǎn)C在線(xiàn)段OB上時(shí),連接OQ,OM,OP,MC, 此時(shí),∠BOM=35,∵∠POM=30, ∴∠AOP=180-∠POM-∠BOM=115, ∴AP的長(zhǎng)=115π2180=2318π. 綜上所述,當(dāng)半圓M與AB相切時(shí),AP的長(zhǎng)為π18或2318π.- 1.請(qǐng)仔細(xì)閱讀文檔,確保文檔完整性,對(duì)于不預(yù)覽、不比對(duì)內(nèi)容而直接下載帶來(lái)的問(wèn)題本站不予受理。
- 2.下載的文檔,不會(huì)出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請(qǐng)點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁(yè)顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開(kāi)word文檔。
- 特殊限制:
部分文檔作品中含有的國(guó)旗、國(guó)徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對(duì)作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 河北省2019年中考數(shù)學(xué)總復(fù)習(xí) 第六單元 課時(shí)訓(xùn)練26 與圓有關(guān)的計(jì)算練習(xí) 河北省 2019 年中 數(shù)學(xué) 復(fù)習(xí) 第六 單元 課時(shí) 訓(xùn)練 26 有關(guān) 計(jì)算 練習(xí)
鏈接地址:http://m.jqnhouse.com/p-5793256.html