(通用版)2019版高考數(shù)學(xué)二輪復(fù)習(xí) 專題跟蹤檢測(cè)(十五)排列、組合、二項(xiàng)式定理 理(重點(diǎn)生含解析).doc
《(通用版)2019版高考數(shù)學(xué)二輪復(fù)習(xí) 專題跟蹤檢測(cè)(十五)排列、組合、二項(xiàng)式定理 理(重點(diǎn)生含解析).doc》由會(huì)員分享,可在線閱讀,更多相關(guān)《(通用版)2019版高考數(shù)學(xué)二輪復(fù)習(xí) 專題跟蹤檢測(cè)(十五)排列、組合、二項(xiàng)式定理 理(重點(diǎn)生含解析).doc(8頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
專題跟蹤檢測(cè)(十五) 排列、組合、二項(xiàng)式定理 組——高考題點(diǎn)全面練 1.(2018全國(guó)卷Ⅲ)5的展開(kāi)式中x4的系數(shù)為( ) A.10 B.20 C.40 D.80 解析:選C 5的展開(kāi)式的通項(xiàng)公式為Tr+1=C(x2)5-rr=C2rx10-3r,令10-3r=4,得r=2.故展開(kāi)式中x4的系數(shù)為C22=40. 2.(2018沈陽(yáng)質(zhì)監(jiān))若4個(gè)人按原來(lái)站的位置重新站成一排,恰有1個(gè)人站在自己原來(lái)的位置,則不同的站法共有( ) A.4種 B.8種 C.12種 D.24種 解析:選B 將4個(gè)人重排,恰有1個(gè)人站在自己原來(lái)的位置,有C種站法,剩下3人不站原來(lái)位置有2種站法,所以共有C2=8種站法. 3.(2018開(kāi)封模擬)某地實(shí)行高考改革,考生除參加語(yǔ)文、數(shù)學(xué)、英語(yǔ)統(tǒng)一考試外,還需從物理、化學(xué)、生物、政治、歷史、地理六科中選考三科.學(xué)生甲要想報(bào)考某高校的法學(xué)專業(yè),就必須要從物理、政治、歷史三科中至少選考一科,則學(xué)生甲的選考方法種數(shù)為( ) A.6 B.12 C.18 D.19 解析:選D 法一:在物理、政治、歷史中選一科的選法有CC=9種;在物理、政治、歷史中選兩科的選法有CC=9種;物理、政治、歷史三科都選的選法有1種.所以學(xué)生甲的選考方法共有9+9+1=19種,故選D. 法二:從六科中選考三科的選法有C種,其中包括了沒(méi)選物理、政治、歷史中任意一科,這種選法有1種,因此學(xué)生甲的選考方法共有C-1=19種,故選D. 4.在(x-2)6的展開(kāi)式中,二項(xiàng)式系數(shù)的最大值為m,含x5項(xiàng)的系數(shù)為t,則=( ) A. B.- C. D.- 解析:選D 因?yàn)槎?xiàng)式的冪指數(shù)n=6是偶數(shù),所以展開(kāi)式共有7項(xiàng),其中中間一項(xiàng)的二項(xiàng)式系數(shù)最大,其二項(xiàng)式系數(shù)為m=C=20,含x5項(xiàng)的系數(shù)t=C(-2)=-12,所以=-=-. 5.參加十九大的甲、乙等5名代表在天安門前排成一排照相,甲和乙必須相鄰且都不站在兩端的排法有( ) A.16 B.20 C.24 D.26 解析:選C 甲、乙相鄰,將甲、乙捆綁在一起看作一個(gè)元素,共有AA種排法,甲、乙相鄰且在兩端有CAA種排法,故甲和乙必須相鄰且都不站在兩端的排法有AA-CAA=24(種). 6.(x2+x+y)5的展開(kāi)式中x5y2的系數(shù)為( ) A.10 B.20 C.30 D.60 解析:選C (x2+x+y)5的展開(kāi)式的通項(xiàng)為Tr+1=C(x2+x)5-ryr,令r=2,則T3=C(x2+x)3y2,又(x2+x)3的展開(kāi)式的通項(xiàng)為Tk+1=C(x2)3-kxk=Cx6-k,令6-k=5,則k=1,所以(x2+x+y)5的展開(kāi)式中,x5y2的系數(shù)為CC=30,故選C. 7.(1-)6(1+)4的展開(kāi)式中x的系數(shù)是( ) A.-4 B.-3 C.3 D.4 解析:選B 法一:(1-)6的展開(kāi)式的通項(xiàng)為C(-)m=C(-1)mx,(1+)4的展開(kāi)式的通項(xiàng)為C()n=Cx,其中m=0,1,2,…,6,n=0,1,2,3,4. 令+=1,得m+n=2, 于是(1-)6(1+)4的展開(kāi)式中x的系數(shù)等于C(-1)0C+C(-1)1C+C(-1)2C=-3. 法二:(1-)6(1+)4=[(1-)(1+)]4(1-)2=(1-x)4(1-2+x).于是(1-)6(1+)4的展開(kāi)式中x的系數(shù)為C1+C(-1)11=-3. 法三:在(1-)6(1+)4的展開(kāi)式中要出現(xiàn)x,可分以下三種情況: ①(1-)6中選2個(gè)(-),(1+)4中選0個(gè)作積,這樣得到的x項(xiàng)的系數(shù)為CC=15; ②(1-)6中選1個(gè)(-),(1+)4中選1個(gè)作積,這樣得到的x項(xiàng)的系數(shù)為C(-1)1C=-24; ③(1-)6中選0個(gè)(-),(1+)4中選2個(gè)作積,這樣得到的x項(xiàng)的系數(shù)為CC=6. 故x項(xiàng)的系數(shù)為15-24+6=-3. 8.若(1+y3)n(n∈N*)的展開(kāi)式中存在常數(shù)項(xiàng),則常數(shù)項(xiàng)為( ) A.-84 B.84 C.-36 D.36 解析:選A 要使(1+y3)n(n∈N*)的展開(kāi)式中存在常數(shù)項(xiàng),只需要1+y3中的y3與n的展開(kāi)式中的項(xiàng)相乘即可.n的通項(xiàng)Tr+1=(-1)rCxn-3ry-r,令n-3r=0且-r=-3,則n=9,r=3,所以常數(shù)項(xiàng)為(-1)3C=-84. 9.設(shè)4=a0+a1+a22+a33+a44,則a2+a4的值是( ) A.32 B.-32 C.40 D.-40 解析:選C ∵4的展開(kāi)式的通項(xiàng)為Tr+1=Cr=C(-2)rr, ∴a2=C(-2)2=24,a4=C(-2)4=16, ∴a2+a4=40. 10.6把椅子擺成一排,3人隨機(jī)就座,任何兩人不相鄰的坐法種數(shù)為( ) A.144 B.120 C.72 D.24 解析:選D 先把3把椅子隔開(kāi)擺好,它們之間和兩端共有4個(gè)位置,再把3人帶椅子插放在4個(gè)位置,共有A=24(種)方法. 11.春天來(lái)了,某學(xué)校組織學(xué)生外出踏青.4位男生和3位女生站成一排合影留念,男生甲和乙要求站在一起,3位女生不全站在一起,則不同的站法種數(shù)是( ) A.964 B.1 080 C.1 152 D.1 296 解析:選C 根據(jù)題意,男生甲和乙要求站在一起,將2人看成一個(gè)整體,考慮2人的順序,有A種情況,將這個(gè)整體與其余5人全排列,有A種情況,則甲和乙站在一起共有AA=1 440(種)站法.其中男生甲和乙要求站在一起且女生全站在一起有AAA=288(種)站法,則符合題意的站法共有1 440-288=1 152(種). 12.將編號(hào)為1,2,3,4,5,6的六個(gè)小球放入編號(hào)為1,2,3,4,5,6的六個(gè)盒子,每個(gè)盒子放一個(gè)小球,若有且只有三個(gè)盒子的編號(hào)與放入的小球編號(hào)相同,則不同的放法總數(shù)是( ) A.40 B.60 C.80 D.100 解析:選A 根據(jù)題意,有且只有三個(gè)盒子的編號(hào)與放入的小球編號(hào)相同,在六個(gè)盒子中任選3個(gè),放入與其編號(hào)相同的小球,有C=20(種)選法,剩下的三個(gè)盒子的編號(hào)與放入的小球編號(hào)不相同,假設(shè)這三個(gè)盒子的編號(hào)為4,5,6,則4號(hào)小球可以放進(jìn)5,6號(hào)盒子,有2種選法,剩下的2個(gè)小球放進(jìn)剩下的兩個(gè)盒子,有1種情況,則不同的放法總數(shù)是2021=40. 13.(2018貴陽(yáng)模擬)9的展開(kāi)式中x3的系數(shù)為-84,則展開(kāi)式的各項(xiàng)系數(shù)之和為_(kāi)_______. 解析:二項(xiàng)展開(kāi)式的通項(xiàng)Tr+1=Cx9-rr=arCx9-2r,令9-2r=3,得r=3,所以a3C=-84,所以a=-1,所以二項(xiàng)式為9,令x=1,則(1-1)9=0,所以展開(kāi)式的各項(xiàng)系數(shù)之和為0. 答案:0 14.(2018合肥質(zhì)檢)已知m是常數(shù),若(mx-1)5=a5x5+a4x4+a3x3+a2x2+a1x+a0且a1+a2+a3+a4+a5=33,則m=________. 解析:當(dāng)x=0時(shí),(-1)5=-1=a0.當(dāng)x=1時(shí),(m-1)5=a0+a1+a2+a3+a4+a5=33-1=32,則m-1=2,m=3. 答案:3 15.某學(xué)校高三年級(jí)有2個(gè)文科班,3個(gè)理科班,現(xiàn)每個(gè)班指定1人,對(duì)各班的衛(wèi)生進(jìn)行檢查,若每班只安排一人檢查,且文科班學(xué)生不檢查文科班,理科班學(xué)生不檢查自己所在的班,則不同安排方法的種數(shù)是________. 解析:根據(jù)題意,分3步進(jìn)行分析: ①在3個(gè)理科班中選2個(gè)班,去檢查2個(gè)文科班,有CA=6種情況; ②剩余的1個(gè)理科班的學(xué)生不能檢查本班,只能檢查其他的2個(gè)理科班,有2種情況; ③將2個(gè)文科班學(xué)生全排列,安排檢查剩下的2個(gè)理科班,有A=2種情況; 則不同安排方法的種數(shù)為622=24種. 答案:24 16.(2018昆明調(diào)研)已知(1+ax)(1+x)3的展開(kāi)式中x3的系數(shù)為7,則a=________. 解析:∵(1+ax)(1+x)3的展開(kāi)式中含x3的項(xiàng)為x3+axCx2=(3a+1)x3,∴3a+1=7,∴a=2. 答案:2 組——高考達(dá)標(biāo)提速練 1.甲、乙兩人從4門課程中各選修2門,則甲、乙所選的課程中至少有1門不相同的選法共有( ) A.30種 B.36種 C.60種 D.72種 解析:選A 甲、乙兩人從4門課程中各選修2門有CC=36(種)選法,甲、乙所選的課程中完全相同的選法有C=6(種),則甲、乙所選的課程中至少有1門不相同的選法共有36-6=30(種). 2.若6的展開(kāi)式中常數(shù)項(xiàng)為,則實(shí)數(shù)a的值為( ) A.2 B. C.-2 D. 解析:選D 6的展開(kāi)式的通項(xiàng)為Tr+1=C(ax)6-rr=Ca6-rx6-3r.令6-3r=0,則r=2.∴Ca4=,即a4=,解得a=. 3.二項(xiàng)式5的展開(kāi)式中x3y2的系數(shù)是( ) A.5 B.-20 C.20 D.-5 解析:選A 二項(xiàng)式5的通項(xiàng)為Tr+1=C5-r(-2y)r.根據(jù)題意,得r=2.所以x3y2的系數(shù)是C3(-2)2=5. 4.用數(shù)字1,2,3,4,5,6,7,8,9組成沒(méi)有重復(fù)數(shù)字,且至多有一個(gè)數(shù)字是偶數(shù)的四位數(shù),這樣的四位數(shù)一共有( ) A.1 080個(gè) B.1 480個(gè) C.1 260個(gè) D.1 200個(gè) 解析:選A (1)當(dāng)沒(méi)有一個(gè)數(shù)字是偶數(shù)時(shí),從1,3,5,7,9這五個(gè)數(shù)字中任取四個(gè)數(shù),再進(jìn)行全排列,得無(wú)重復(fù)數(shù)字的四位數(shù)有A=120(個(gè)); (2)當(dāng)僅有一個(gè)數(shù)字是偶數(shù)時(shí),先從2,4,6,8中任取一個(gè)數(shù),再?gòu)?,3,5,7,9中任取三個(gè)數(shù),然后再進(jìn)行全排列得無(wú)重復(fù)數(shù)字的四位數(shù)有CCA=960(個(gè)). 故由分類加法計(jì)數(shù)原理得這樣的四位數(shù)共有120+960=1 080(個(gè)). 5.(1+x)8(1+y)4的展開(kāi)式中x2y2的系數(shù)是( ) A.56 B.84 C.112 D.168 解析:選D (1+x)8的展開(kāi)式中x2的系數(shù)為C,(1+y)4的展開(kāi)式中y2的系數(shù)為C,所以x2y2的系數(shù)為CC=168. 6.已知(1+ax)(1+x)5的展開(kāi)式中x2的系數(shù)為5,則a=( ) A.-4 B.-3 C.-2 D.-1 解析:選D 展開(kāi)式中含x2的系數(shù)為C+aC=5,解得a=-1. 7.若(1+mx)6=a0+a1x+a2x2+…+a6x6,且a1+a2+…+a6=63,則實(shí)數(shù)m的值為( ) A.1或3 B.-3 C.1 D.1或-3 解析:選D 令x=0,得a0=(1+0)6=1.令x=1,得(1+m)6=a0+a1+a2+…+a6.∵a1+a2+a3+…+a6=63,∴(1+m)6=64=26,∴m=1或m=-3. 8.若無(wú)重復(fù)數(shù)字的三位數(shù)滿足條件:①個(gè)位數(shù)字與十位數(shù)字之和為奇數(shù),②所有數(shù)位上的數(shù)字和為偶數(shù),則這樣的三位數(shù)的個(gè)數(shù)是( ) A.540 B.480 C.360 D.200 解析:選D 由“個(gè)位數(shù)字與十位數(shù)字之和為奇數(shù)”知個(gè)位數(shù)字、十位數(shù)字為1奇1偶,共有CCA=50(種)排法;由“所有數(shù)位上的數(shù)字和為偶數(shù)”知百位數(shù)字是奇數(shù),有C=4(種)排法.故滿足題意的三位數(shù)共有504=200(個(gè)). 9.(2019屆高三南昌重點(diǎn)中學(xué)聯(lián)考)若n(n∈N*)的展開(kāi)式中第3項(xiàng)的二項(xiàng)式系數(shù)為36,則其展開(kāi)式中的常數(shù)項(xiàng)為( ) A.84 B.-252 C.252 D.-84 解析:選A 由題意可得C=36,∴n=9. ∵9的展開(kāi)式的通項(xiàng)為 Tr+1=C99-rrx, 令9-=0,得r=6. ∴展開(kāi)式中的常數(shù)項(xiàng)為C936=84. 10.籃球比賽中每支球隊(duì)的出場(chǎng)陣容由5名隊(duì)員組成.2017年的NBA籃球賽中,休斯敦火箭隊(duì)采取了“八人輪換”的陣容,即每場(chǎng)比賽只有8名隊(duì)員有機(jī)會(huì)出場(chǎng),這8名隊(duì)員中包含兩名中鋒,兩名控球后衛(wèi),若要求每一套出場(chǎng)陣容中有且僅有一名中鋒,至少包含一名控球后衛(wèi),則休斯敦火箭隊(duì)的主教練可選擇的出場(chǎng)陣容共有( ) A.16種 B.28種 C.84種 D.96種 解析:選B 有兩種出場(chǎng)方案:(1)中鋒1人,控球后衛(wèi)1人,出場(chǎng)陣容有CCC=16(種);(2)中鋒1人,控球后衛(wèi)2人,出場(chǎng)陣容有CCC=12(種).故出場(chǎng)陣容共有16+12=28(種). 11.某微信群中有甲、乙、丙、丁、戊五個(gè)人玩搶紅包游戲,現(xiàn)有4個(gè)紅包,每人最多搶一個(gè),且紅包被全部搶完,4個(gè)紅包中有2個(gè)6元,1個(gè)8元,1個(gè)10元(紅包中金額相同視為相同紅包),則甲、乙都搶到紅包的情況有( ) A.18種 B.24種 C.36種 D.48種 解析:選C 若甲、乙搶的是一個(gè)6元和一個(gè)8元的,剩下2個(gè)紅包,被剩下的3個(gè)人中的2個(gè)人搶走,有AA=12(種);若甲、乙搶的是一個(gè)6元和一個(gè)10元的,剩下2個(gè)紅包,被剩下的3個(gè)人中的2個(gè)人搶走,有AA=12(種);若甲、乙搶的是一個(gè)8元和一個(gè)10元的,剩下2個(gè)紅包,被剩下的3個(gè)人中的2個(gè)人搶走,有AC=6(種);若甲、乙搶的是兩個(gè)6元的,剩下2個(gè)紅包,被剩下的3個(gè)人中的2個(gè)人搶走,有A=6(種).根據(jù)分類加法計(jì)數(shù)原理可得,共有12+12+6+6=36(種). 12.若m,n均為非負(fù)整數(shù),在做m+n的加法時(shí)各位均不進(jìn)位(例如:134+3 802=3 936),則稱(m,n)為“簡(jiǎn)單的”有序?qū)?,而m+n稱為有序?qū)?m,n)的值,那么值為1 942的“簡(jiǎn)單的”有序?qū)Φ膫€(gè)數(shù)是( ) A.100 B.150 C.30 D.300 解析:選D 第一步,1=1+0,1=0+1,共2種組合方式;第二步,9=0+9,9=1+8,9=2+7,9=3+6,…,9=9+0,共10種組合方式;第三步,4=0+4,4=1+3,4=2+2,4=3+1,4=4+0,共5種組合方式;第四步,2=0+2,2=1+1,2=2+0,共3種組合方式.根據(jù)分步乘法計(jì)數(shù)原理知,值為1 942的“簡(jiǎn)單的”有序?qū)Φ膫€(gè)數(shù)是21053=300. 13.(2018福州模擬)設(shè)n為正整數(shù),n的展開(kāi)式中僅有第5項(xiàng)的二項(xiàng)式系數(shù)最大,則展開(kāi)式中的常數(shù)項(xiàng)為_(kāi)_______. 解析:依題意得,n=8,所以展開(kāi)式的通項(xiàng)Tr+1=Cx8-rr=(-2)rCx8-4r,令8-4r=0,解得r=2,所以展開(kāi)式中的常數(shù)項(xiàng)為T3=(-2)2C=112. 答案:112 14.5的展開(kāi)式中的常數(shù)項(xiàng)為_(kāi)___________.(用數(shù)字作答) 解析:法一:原式=5=[(x+)2]5=(x+)10. 求原式的展開(kāi)式中的常數(shù)項(xiàng),轉(zhuǎn)化為求(x+)10的展開(kāi)式中含x5項(xiàng)的系數(shù),即C ()5. 所以所求的常數(shù)項(xiàng)為=. 法二:要得到常數(shù)項(xiàng),可以對(duì)5個(gè)括號(hào)中的選取情況進(jìn)行分類; ①5個(gè)括號(hào)中都選取常數(shù)項(xiàng),這樣得到的常數(shù)項(xiàng)為()5. ②5個(gè)括號(hào)中的1個(gè)選,1個(gè)選,3個(gè)選,這樣得到的常數(shù)項(xiàng)為CCC()3. ③5個(gè)括號(hào)中的2個(gè)選,2個(gè)選,1個(gè)選,這樣得到的常數(shù)項(xiàng)為C2C. 因此展開(kāi)式的常數(shù)項(xiàng)為()5+CCC()3+C2C=. 答案: 15.江湖傳說(shuō),蜀中唐門配制的天下第一奇毒“含笑半步癲”是由3種藏紅花,2種南海毒蛇和1種西域毒草順次添加煉制而成,其中藏紅花的添加順序不能相鄰,同時(shí)南海毒蛇的添加順序也不能相鄰.現(xiàn)要研究所有不同添加順序?qū)λ幮У挠绊?,則總共要進(jìn)行________次試驗(yàn). 解析:當(dāng)3種藏紅花排好后,4種情形里2種南海毒蛇和1種西域毒草的填法分別有A 種、CA種、CA種、A種,于是符合題意的添加順序有A(A+CA+CA+A)=120(種). 答案:120 16.冬季供暖就要開(kāi)始,現(xiàn)分配出5名水暖工去3個(gè)不同的居民小區(qū)檢查暖氣管道,每名水暖工只去一個(gè)小區(qū),且每個(gè)小區(qū)都要有人去檢查,那么分配的方案共有______種. 解析:5名水暖工去3個(gè)不同的居民小區(qū),每名水暖工只去一個(gè)小區(qū),且每個(gè)小區(qū)都要有人去檢查,5名水暖工分組方案為3,1,1和1,2,2,則分配的方案共有A=150(種). 答案:150- 1.請(qǐng)仔細(xì)閱讀文檔,確保文檔完整性,對(duì)于不預(yù)覽、不比對(duì)內(nèi)容而直接下載帶來(lái)的問(wèn)題本站不予受理。
- 2.下載的文檔,不會(huì)出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請(qǐng)點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁(yè)顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開(kāi)word文檔。
- 特殊限制:
部分文檔作品中含有的國(guó)旗、國(guó)徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對(duì)作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 通用版2019版高考數(shù)學(xué)二輪復(fù)習(xí) 專題跟蹤檢測(cè)十五排列、組合、二項(xiàng)式定理 理重點(diǎn)生,含解析 通用版 2019 高考 數(shù)學(xué) 二輪 復(fù)習(xí) 專題 跟蹤 檢測(cè) 十五 排列 組合 二項(xiàng)式 定理 重點(diǎn)
鏈接地址:http://m.jqnhouse.com/p-6111612.html