(浙江專(zhuān)用)2019高考數(shù)學(xué)二輪復(fù)習(xí) 課時(shí)跟蹤檢測(cè)(十八)小題考法——函數(shù)的概念與性質(zhì).doc
《(浙江專(zhuān)用)2019高考數(shù)學(xué)二輪復(fù)習(xí) 課時(shí)跟蹤檢測(cè)(十八)小題考法——函數(shù)的概念與性質(zhì).doc》由會(huì)員分享,可在線閱讀,更多相關(guān)《(浙江專(zhuān)用)2019高考數(shù)學(xué)二輪復(fù)習(xí) 課時(shí)跟蹤檢測(cè)(十八)小題考法——函數(shù)的概念與性質(zhì).doc(10頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
課時(shí)跟蹤檢測(cè)(十八) 小題考法——函數(shù)的概念與性質(zhì) A組——10+7提速練 一、選擇題 1.(2019屆高三杭州四校聯(lián)考)已知函數(shù)f(x)=則f(f(4))的值為( ) A.- B.-9 C. D.9 解析:選C 因?yàn)閒(x)=所以f(f(4))=f(-2)=. 2.已知函數(shù)f(x)=則下列結(jié)論正確的是( ) A.函數(shù)f(x)是偶函數(shù) B.函數(shù)f(x)是減函數(shù) C.函數(shù)f(x)是周期函數(shù) D.函數(shù)f(x)的值域?yàn)閇-1,+∞) 解析:選D 由函數(shù)f(x)的解析式,知f(1)=2,f(-1)=cos(-1)=cos 1,f(1)≠f(-1),則f(x)不是偶函數(shù).當(dāng)x>0時(shí),f(x)=x2+1,則f(x)在區(qū)間(0,+∞)上是增函數(shù),且函數(shù)值f(x)>1;當(dāng)x≤0時(shí),f(x)=cos x,則f(x)在區(qū)間(-∞,0]上不是單調(diào)函數(shù),且函數(shù)值f(x) ∈[-1,1].所以函數(shù)f(x)不是單調(diào)函數(shù),也不是周期函數(shù),其值域?yàn)閇-1,+∞).故選D. 3.(2018全國(guó)卷Ⅲ)函數(shù)y=-x4+x2+2的圖象大致為( ) 解析:選D 法一:令f(x)=-x4+x2+2, 則f′(x)=-4x3+2x, 令f′(x)=0,得x=0或x=, 則f′(x)>0的解集為∪, f(x)單調(diào)遞增;f′(x)<0的解集為∪,f(x)單調(diào)遞減,結(jié)合圖象知選D. 法二:當(dāng)x=1時(shí),y=2,所以排除A、B選項(xiàng).當(dāng)x=0時(shí),y=2,而當(dāng)x=時(shí),y=-++2=2>2,所以排除C選項(xiàng).故選D. 4.已知函數(shù)f(x-1)是定義在R上的奇函數(shù),且在[0,+∞)上是增函數(shù),則函數(shù)f(x)的圖象可能是( ) 解析:選B 函數(shù)f(x-1)的圖象向左平移1個(gè)單位,即可得到函數(shù)f(x)的圖象.因?yàn)楹瘮?shù)f(x-1)是定義在R上的奇函數(shù),所以函數(shù)f(x-1)的圖象關(guān)于原點(diǎn)對(duì)稱(chēng),所以函數(shù)f(x)的圖象關(guān)于點(diǎn)(-1,0)對(duì)稱(chēng),排除A、C、D,故選B. 5.(2019屆高三鎮(zhèn)海中學(xué)測(cè)試)設(shè)f(x)為定義在R上的奇函數(shù),當(dāng)x≥0時(shí),f(x)=log2(x+2)-3x+a(a∈R),則f(-2)=( ) A.-1 B.-5 C.1 D.5 解析:選D 因?yàn)閒(x)為定義在R上的奇函數(shù), 所以f(0)=1+a=0,即a=-1. 故f(x)=log2(x+2)-3x-1(x≥0), 所以f(-2)=-f(2)=5.故選D. 6.(2018諸暨高三期末)已知f(x),g(x)都是定義在R上的函數(shù),且f(x)為奇函數(shù),g(x)的圖象關(guān)于直線x=1對(duì)稱(chēng),則下列四個(gè)命題中錯(cuò)誤的是( ) A.y=g(f(x)+1)為偶函數(shù) B.y=g(f(x))為奇函數(shù) C.函數(shù)y=f(g(x))的圖象關(guān)于直線x=1對(duì)稱(chēng) D.y=f(g(x+1))為偶函數(shù) 解析:選B 由題可知 選項(xiàng)A,g(f(-x)+1)=g(-f(x)+1)=g(1+f(x)), 所以y=g(f(x)+1)為偶函數(shù),正確; 選項(xiàng)B,g(f(-x))=g(-f(x))=g(2+f(x)), 所以y=g(f(x))不一定為奇函數(shù),錯(cuò)誤; 選項(xiàng)C,f(g(-x))=f(g(2+x)),所以y=f(g(x))的圖象關(guān)于直線x=1對(duì)稱(chēng),正確; 選項(xiàng)D,f(g(-x+1))=f(g(x+1)),所以y=f(g(x+1))為偶函數(shù),正確. 綜上,故選B. 7.函數(shù)y=+在[-2,2]上的圖象大致為( ) 解析:選B 當(dāng)x∈(0,2]時(shí),函數(shù)y==,x2>0恒成立,令g(x)=ln x+1,則g(x)在(0,2]上單調(diào)遞增,當(dāng)x=時(shí),y=0,則當(dāng)x∈時(shí),y=<0,x∈時(shí),y=>0,∴函數(shù)y=在(0,2]上只有一個(gè)零點(diǎn),排除A、C、D,只有選項(xiàng)B符合題意. 8.(2018全國(guó)卷Ⅱ)已知f(x)是定義域?yàn)?-∞,+∞)的奇函數(shù),滿(mǎn)足f(1-x)=f(1+x).若f(1)=2,則f(1)+f(2)+f(3)+…+f(50)=( ) A.-50 B.0 C.2 D.50 解析:選C 法一:∵f(x)是奇函數(shù),∴f(-x)=-f(x), ∴f(1-x)=-f(x-1). 由f(1-x)=f(1+x),得-f(x-1)=f(x+1), ∴f(x+2)=-f(x), ∴f(x+4)=-f(x+2)=f(x), ∴函數(shù)f(x)是周期為4的周期函數(shù). 由f(x)為奇函數(shù)得f(0)=0. 又∵f(1-x)=f(1+x), ∴f(x)的圖象關(guān)于直線x=1對(duì)稱(chēng), ∴f(2)=f(0)=0,∴f(-2)=0. 又f(1)=2,∴f(-1)=-2, ∴f(1)+f(2)+f(3)+f(4)=f(1)+f(2)+f(-1)+f(0)=2+0-2+0=0, ∴f(1)+f(2)+f(3)+f(4)+…+f(49)+f(50) =012+f(49)+f(50) =f(1)+f(2)=2+0=2. 法二:由題意可設(shè)f(x)=2sin,作出f(x)的部分圖象如圖所示.由圖可知,f(x)的一個(gè)周期為4,所以f(1)+f(2)+f(3)+…+f(50)=12[f(1)+f(2)+f(3)+f(4)]+f(49)+f(50)=120+f(1)+f(2)=2. 9.設(shè)函數(shù)f(x)=ax2+bx+c(a>b>c)的圖象經(jīng)過(guò)點(diǎn)A(m1,f(m1))和點(diǎn)B(m2,f(m2)),f(1)=0.若a2+[f(m1)+f(m2)]a+f(m1)f(m2)=0,則( ) A.b≥0 B.b<0 C.3a+c≤0 D.3a-c<0 解析:選A ∵函數(shù)f(x)=ax2+bx+c(a>b>c), 滿(mǎn)足f(1)=0,∴a+b+c=0. 若a≤0,∵a>b>c,∴b<0,c<0, 則有a+b+c<0,這與a+b+c=0矛盾,∴a>0成立. 若c≥0,則有b>0,a>0, 此時(shí)a+b+c>0,這與a+b+c=0矛盾, ∴c<0成立. ∵a2+[f(m1)+f(m2)]a+f(m1)f(m2)=0, ∴[a+f(m1)][a+f(m2)]=0, ∴m1,m2是方程f(x)=-a的兩根, ∴Δ=b2-4a(a+c)=b(b+4a)=b(3a-c)≥0, 而a>0,c<0, ∴3a-c>0,∴b≥0.故選A. 10.已知函數(shù)f(x)=若f(x)的值域?yàn)镽,則實(shí)數(shù)a的取值范圍是( ) A.(1,2] B.(-∞,2] C.(0,2] D.[2,+∞) 解析:選A 依題意,當(dāng)x≥1時(shí),f(x)=1+log2x單調(diào)遞增,f(x)=1+log2x在區(qū)間[1,+∞)上的值域是[1,+∞).因此,要使函數(shù)f(x)的值域是R,則需函數(shù)f(x)在(-∞,1)上的值域M?(-∞,1).①當(dāng)a-1<0,即a<1時(shí),函數(shù)f(x)在(-∞,1)上單調(diào)遞減,函數(shù)f(x)在(-∞,1)上的值域M=(-a+3,+∞),顯然此時(shí)不能滿(mǎn)足M?(-∞,1),因此a<1不滿(mǎn)足題意;②當(dāng)a-1=0,即a=1時(shí),函數(shù)f(x)在(-∞,1)上的值域M={2},此時(shí)不能滿(mǎn)足M?(-∞,1),因此a=1不滿(mǎn)足題意;③當(dāng)a-1>0,即a>1時(shí),函數(shù)f(x)在(-∞,1)上單調(diào)遞增,函數(shù)f(x)在(-∞,1)上的值域M=(-∞,-a+3),由M?(-∞,1)得解得1時(shí),f =f ,則f(0)=________,f(6)=________. 解析:函數(shù)f(x)在[-1,1]上為奇函數(shù),故f(0)=0, 又由題意知當(dāng)x>時(shí),f =f , 則f(x+1)=f(x). 又當(dāng)-1≤x≤1時(shí),f(-x)=-f(x), ∴f(6)=f(1)=-f(-1). 又當(dāng)x<0時(shí),f(x)=x3-1, ∴f(-1)=-2,∴f(6)=2. 答案:0 2 12.(2018臺(tái)州第一次調(diào)考)若函數(shù)f(x)=a-(a∈R)是奇函數(shù),則a=________,函數(shù)f(x)的值域?yàn)開(kāi)___________. 解析:函數(shù)f(x)的定義域?yàn)?-∞,0)∪(0,+∞), ∵f(x)是奇函數(shù), ∴f(-x)=-f(x)恒成立, ∴a-=-恒成立, ∴a=+=+==-1. ∴f(x)=-1-,當(dāng)x∈(0,+∞)時(shí),2x>1, ∴2x-1>0,∴>0,∴f(x)<-1; 當(dāng)x∈(-∞,0)時(shí),0<2x<1, ∴-1<2x-1<0,∴<-1, ∴->2,∴f(x)>1, 故函數(shù)f(x)的值域?yàn)?-∞,-1)∪(1,+∞). 答案:-1 (-∞,-1)∪(1,+∞) 13.(2018紹興柯橋區(qū)模擬)已知偶函數(shù)f(x)在[0,+∞)上單調(diào)遞減,f(2)=0,若f(x-2)>0,則x的取值范圍是________. 解析:∵偶函數(shù)f(x)在[0,+∞)上單調(diào)遞減, 且f(2)=0, ∴f(2)=f(-2)=0, 則不等式f(x-2)>0,等價(jià)為f(|x-2|)>f(2), ∴|x-2|<2, 即-2- 1.請(qǐng)仔細(xì)閱讀文檔,確保文檔完整性,對(duì)于不預(yù)覽、不比對(duì)內(nèi)容而直接下載帶來(lái)的問(wèn)題本站不予受理。
- 2.下載的文檔,不會(huì)出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請(qǐng)點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁(yè)顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開(kāi)word文檔。
- 特殊限制:
部分文檔作品中含有的國(guó)旗、國(guó)徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對(duì)作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 浙江專(zhuān)用2019高考數(shù)學(xué)二輪復(fù)習(xí) 課時(shí)跟蹤檢測(cè)十八小題考法函數(shù)的概念與性質(zhì) 浙江 專(zhuān)用 2019 高考 數(shù)學(xué) 二輪 復(fù)習(xí) 課時(shí) 跟蹤 檢測(cè) 十八 小題考法 函數(shù) 概念 性質(zhì)
鏈接地址:http://m.jqnhouse.com/p-6371772.html