華晨寶馬齒輪齒條轉(zhuǎn)向器設計
《華晨寶馬齒輪齒條轉(zhuǎn)向器設計》由會員分享,可在線閱讀,更多相關《華晨寶馬齒輪齒條轉(zhuǎn)向器設計(40頁珍藏版)》請在裝配圖網(wǎng)上搜索。
畢業(yè)設計(論文) 2015屆 專業(yè) 機械設計制造及其自動化(汽車工程) 題 目: 華晨寶馬齒輪齒條轉(zhuǎn)向器的設計 子 題: 學生姓名: 吳遠江 班級學號:0621102/062108217 指導教師: 李傳昌 職 稱: 副教授 所在系(教研室): 汽車工程學院 下達日期:2014年12月4日 完成日期:2015年1月19日 摘 要 本論文根據(jù)對齒輪齒條式轉(zhuǎn)向器的研究以及資料的查閱,著重闡述了齒輪齒條式轉(zhuǎn)向器類型選擇,不同類型齒輪齒條式轉(zhuǎn)向器的優(yōu)缺點和各種類型齒輪齒條式轉(zhuǎn)向器應用狀況。 根據(jù)原有數(shù)據(jù)計算轉(zhuǎn)向系的傳動比,并確定齒輪齒條的幾何參數(shù)。 齒輪齒條式轉(zhuǎn)向器總體設計,受力分析,及對齒輪齒條的疲勞強度校核、齒根彎曲疲勞強度校核。修正齒輪 齒條式轉(zhuǎn)向器中不合理的數(shù)據(jù)。通過對齒輪齒條式轉(zhuǎn)向器的設計,選取出相關的零件如螺釘、軸承等,并在說明書中畫出相關零件的零件圖。通過說明書并畫出齒輪齒條式轉(zhuǎn)向器的零件圖。 本題目為設計類實際課題,來源于華晨寶馬齒輪齒條式轉(zhuǎn)向器的設計過程。我國生產(chǎn)的寶馬車齒輪齒條式轉(zhuǎn)向器從仿制開始起步,近期產(chǎn)品的質(zhì)量較早期有所提高。但受國產(chǎn)配套件質(zhì)量及設計水平等的影響,我國目前生產(chǎn)的寶馬車的總體水平,與進口產(chǎn)品及港口用戶的要求仍有較大差距,齒輪齒條式轉(zhuǎn)向器的生產(chǎn)也是如此,為滿足市場需求,特開發(fā)華晨寶馬齒輪齒條式轉(zhuǎn)向器。通過對華晨寶馬齒輪齒條式轉(zhuǎn)向器的設計,能培養(yǎng)學生綜合運用所學的基本理論、基本知識解決問題的能力,培養(yǎng)學生英語閱讀和翻譯能力,學習專用汽車設計經(jīng)驗,掌握汽車設計基本方法。 關鍵詞:齒輪齒條;轉(zhuǎn)向器;基本理論;汽車設計 Abstract With development of all kind of science technology and global economy, Pneumatic manipulator is a automated devices that can mimic the human hand and arm movements to do something,aslo can according to a fixed procedure to moving objects or control tools. It can replace the heavy labor in order to achieve the production mechanization and automation, and can work in dangerous working environments to protect the personal safety. Therefore widely used in machine building, metallurgy, electronics, light industry and atomic energy sectors.The pneumatic part of the design is primarily to choose the right valves and design a reasonable pneumatic control loop, by controlling and regulating pressure,atcompressedneceengththdirectionprocedurework.Theinvertedpendulumisatypicalhighordersystem,withmultivariable,non-linear, strong-coupling,fleetandabsolutelyinstable.Itisrepresentativeasanidealmodeltoprovenewcontroltheoryandtechniques.Duringthecontrolprocess,pendulumcaneffectivelyreflectmanykeyproblemssuchasequanimity,robust,follow-upandtrack,therefore.Thispaperstudiesacontrolmethodofdoubleinvertedpendulum.Firstofall,themathematicalmodelofthedoubleinvertedpendulumisestablished,thenmakeacontroldesigntodoubleinvertedpendulumonthemathematicalmodel,anddeterminethesystemperformanceindexweightmatrix,byusinggeneticalgorithminordertoattainthesystemstatefeedbackcontrolmatrix.Finally,thesimulationofthesystemismadeby.Afterseveraltestmatrixvaluetheresultsarenotsatisfactoryresponse,thenweoptimizematrixbyusingGeneticAlgorithm.Simulationresultsshow:ThesystemresponsecanmeetthedesignrequirementseffectivelyafterGeneticAlgorithmoptimization.Small twisted paper broken machine for ordinary home, not only can be used for minced meat, can also be used with crushed peanuts, crushed ice, spices and otherfood, small power requirements, powered by the motor drive, reasonable structuredesign. Key word: Rack and pinion;steering ; basic throey ; car design 目 錄 摘要 2 Abstract 3 第一章 緒論 4 1.1 課題的來源與研究的目的和意義 5 1.2 汽車轉(zhuǎn)向裝置的發(fā)展趨勢 6 1.3 本課題研究的主要內(nèi)容 6 第二章 華晨寶馬齒輪齒條轉(zhuǎn)向器總體結構的設計 7 2.1 齒輪齒條轉(zhuǎn)向器的總體方案圖 8 2.2 齒輪齒條轉(zhuǎn)向器的轉(zhuǎn)向原理 9 2.3 傳動比的計算 10 2.3.1汽車方向盤(轉(zhuǎn)向盤) 11 2.3.2轉(zhuǎn)向阻力矩 11 2.3.3角傳動比與力傳動比 12 2.4 齒輪設計 12 2.4.1 齒輪參數(shù)的選擇 12 2.4.2齒輪幾何尺寸確定 12 2.4.3齒根彎曲疲勞強度計算 12 2.4.4齒輪精度等級、材料及參數(shù)的選擇 12 2.4.5齒輪的齒根彎曲強度設計 12 2.5齒條的設計 12 2.6齒輪軸的設計 22 第三章 各主要零部件強度的校核 25 3.1軸承強度的校核與計算 26 3.2傳動軸強度的校核計算 27 第四章 齒輪齒條轉(zhuǎn)向器中主要零件的三維建模 29 4.1方向盤的三維建模 32 4.2轉(zhuǎn)向軸的三維建模 32 4.3動力缸體的三維建模 33 4.4齒輪齒條轉(zhuǎn)向器的三維建模 34 第五章 三維軟件設計總結 37 結論 38 致謝 39 參考文獻 40 第一章緒論 1.1課題的來源與研究的目的和意義 由于機械工程的知識總量已經(jīng)遠遠超越個人掌握所有,一些專業(yè)知識是必不可少的。但是過度的專業(yè)知識分割,使視野狹隘,可以多多參加技術交流,和參加科研項目,縮小范圍,提升新技術的進步和整個塊的技術,提高外部條件變化的適應能力。封閉的專業(yè)知識的太狹隘,考慮的問題太特殊,在工作中協(xié)調(diào)困難,不利于自我提高。因此,自上世紀第二十年代末,出現(xiàn)了一體化的趨勢。人們越來越重視基礎理論,拓寬領域,對專業(yè)合并的分化。機械工程可以增加產(chǎn)量,提高勞動生產(chǎn)率,提高生產(chǎn)的經(jīng)濟效益為目標,并研制和發(fā)展新的機械產(chǎn)品。在未來,新產(chǎn)品的開發(fā),降低資源消耗,清潔的可再生能源,成本的控制,減少或消除環(huán)境污染作為一個超級經(jīng)濟目標和任務。機器能完成人的手和腳,耳朵和眼睛等等器官完全不能直接完成的任務。現(xiàn)代機械工程機械和機械設備創(chuàng)造出更多、更精美的越來越復雜,很多幻想成為過去的現(xiàn)實。人類現(xiàn)在能成為天空的上游和宇宙,潛入海洋,數(shù)十億光年的密切觀察,細胞和分子。電子計算機硬件和軟件,人類的新興科學已經(jīng)開始加強,并部分代替人腦科學,這是人工智能。這一新的發(fā)展已經(jīng)顯示出巨大的作用,但在未來幾年還將繼續(xù)創(chuàng)造出不可思議的奇跡。人類智慧的增長并沒有減少手的效果,而是要求越來越精致,手工制作,更復雜的工作,從而促進手功能。又一方面實踐促進人腦智力。在人類的進化過程中,以及在每個人的成長過程中,大腦和手是互相促進和平行進化。大腦和手之間的人工智能和機械工程的近似關系,唯一不同的是,智能硬件還需要使用機械制造。在過去,各種機械離不開人類的操作和控制,反應速度和運算精度的進化是非常緩慢的大腦和神經(jīng)系統(tǒng),人工智能將消除這種限制。相互促進,計算機科學和機械工程進展之間的平行,將在更高層次的新一輪發(fā)展的開始使機械工程。在第十九世紀,機械工程的知識總量仍然是有限的,大學在歐洲,它與一般的土木工程是一門綜合性的學科,稱為土木工程,下半場的第十九個世紀成為一門獨立的學科。在第二十世紀,隨著機械工程和知識增長的發(fā)展開始分解,機械工程專業(yè),有分支機構。在第二十世紀中期趨勢分解,在時間之前和之后的第二次世界大戰(zhàn)結束時達到的峰值。由于機械工程的知識總量已經(jīng)遠遠從個人掌握所有,一些專業(yè)是必不可少的。但是過度的專業(yè)知識使分割,視野狹隘,可以查看和統(tǒng)籌大局和全球工程和技術交流,縮小范圍,新技術的進步和整個塊的技術,外部條件變化的適應能力差。封閉的專業(yè)知識的專家太狹,考慮的問題太特殊,在工作協(xié)調(diào)困難,不利于自我提高。因此,自上世紀第二十年代末,出現(xiàn)了一體化的趨勢。人們越來越重視基礎理論,拓寬領域,對專業(yè)合并的分化。綜合職業(yè)分化和發(fā)展知識循環(huán)過程的合成,是合理和必要的。從不同的專業(yè)和專業(yè)知識的專家,也有綜合的知識了解不夠,看看其他學科和項目作為一個整體,從而形成一種相互強烈的集體工作。綜合和專業(yè)水平。有機械工程全面而專業(yè)的沖突;在綜合性工程技術也有綜合和專業(yè)問題。在人類所有的知識,包括社會科學,自然科學和工程技術,有一個更高的水平,更廣泛的綜合性和專業(yè)性的問題。 1.2 汽車轉(zhuǎn)向裝置的發(fā)展趨勢 現(xiàn)代汽車轉(zhuǎn)向裝置的使用動態(tài) 隨著汽車工業(yè)的迅速發(fā)展, 轉(zhuǎn)向裝置的結構也有很大變化。汽車轉(zhuǎn)向器的結構很多,從目前使用的普遍程度來看,主要的轉(zhuǎn)向器類型有4 種:有蝸桿銷式(WP 型)、蝸桿滾 輪式(WR 型)、循環(huán)球式(BS 型)、齒條齒輪式(BP 型)。這四種轉(zhuǎn)向器型式,已經(jīng)被廣泛 使用在汽車上。當今社會,隨著機械工業(yè)的蓬勃發(fā)展,各行各業(yè)的機械設備也在不斷地更新,不斷地完善,寶馬齒輪齒條轉(zhuǎn)向器同樣在發(fā)展著,傳統(tǒng)的目前市面上的齒輪齒條轉(zhuǎn)向器大多都是采用傳統(tǒng)的結構,在某些特定的區(qū)域,這種結構形式的齒輪齒條轉(zhuǎn)向器非常不受歡迎。由于以往的齒輪齒條轉(zhuǎn)向器采用傳統(tǒng)的結構形式,這樣就造成傳動精度不好控制,保養(yǎng)維護費用較高;同時存在一定的安全隱患。因此,對整機的安全性要求較高,操作時也會給工作人員帶來強烈的震動,使得操作很不舒服。雖然傳統(tǒng)的齒輪齒條轉(zhuǎn)向器傳動效率較高,變速效果較好,但是價格也較昂貴,對于一般的用戶難以接受。所以研究一種新式的齒輪齒條轉(zhuǎn)向器勢在必行!各種齒輪齒條轉(zhuǎn)向器類型如下圖所示: 1.3 本課題研究的主要內(nèi)容 本論文主要研究運用SolidWorks對華晨寶馬齒輪齒條轉(zhuǎn)向器進行設計。在設計過程中,了解SolidWorks的各種功能。 SolidWorks公司成立于1993年,由PTC公司的技術副總裁與CV公司的副總裁發(fā)起,總部位于馬薩諸州的康克爾郡(Concord,Massachusetts)內(nèi)。當初的目標是希望在每一個工程師的桌面上提供一套具有生產(chǎn)力的實體模型設計系統(tǒng)。從1995年推出第一套SolidWorks三維機械設計軟件至今已經(jīng)擁有位于全球的辦事處,并經(jīng)由300家經(jīng)銷商在全球140個國家進行銷售與分銷該產(chǎn)品。1997年,Solidworks被法國達索(Dassault Systemes)公司收購,作為達索中端主流市場的主打品牌。SolidWorks軟件是世界上第一個基于Windows開發(fā)的三維CAD系統(tǒng)。由于技術創(chuàng)新符合CAD技術的發(fā)展潮流和趨勢,SolidWorks公司于兩年間成為CAD/CAM產(chǎn)業(yè)中獲利最高的公司。良好的財務狀況和用戶支持使得SolidWorks每年都有數(shù)十乃至數(shù)百項的技術創(chuàng)新,公司也獲得了很多榮譽。該系統(tǒng)在1995-1999年獲得全球微機平臺CAD系統(tǒng)評比第一名。從1995年至今,已經(jīng)累計獲得十七項國際大獎。其中僅從1999年起,美國權威的CAD專業(yè)雜志CADENCE連續(xù)4年授予SolidWorks最佳編輯獎,以表彰SolidWorks的創(chuàng)新、活力和簡明。至此,SolidWorks所遵循的易用、穩(wěn)定和創(chuàng)新三大原則得到了全面的落實和證明,使用它,設計師大大縮短了設計時間,產(chǎn)品快速、高效地投向了市場。 由于SolidWorks出色的技術和市場表現(xiàn),不僅成為CAD行業(yè)的一顆耀眼的明星,也成為華爾街青睞的對象。終于在1997年由法國達索公司以三億一千萬美元的高額市值將SolidWorks全資并購。公司原來的風險投資商和股東,以一千三百萬美元的風險投資,獲得了高額的回報,創(chuàng)造了CAD行業(yè)的世界紀錄。并購后的SolidWorks以原來的品牌和管理技術隊伍繼續(xù)獨立運作,成為CAD行業(yè)一家高素質(zhì)的專業(yè)化公司。SolidWorks三維機械設計軟件也成為達索企業(yè)中最具競爭力的CAD產(chǎn)品。 由于使用了Windows OLE技術、直觀式設計技術、先進的parasolid內(nèi)核(由劍橋提供)以及良好的與第三方軟件的集成技術。SolidWorks成為全球裝機量最大、最好用的軟件。資料顯示,目前全球發(fā)放的SolidWorks軟件使用許可約28萬,涉及航空航天、機車、食品、機械、國防、交通、模具、電子通訊、醫(yī)療器械、娛樂工業(yè)、日用品/消費品、離散制造等分布于全球100多個國家的約3萬1千家企業(yè)。在教育市場上,每年來自全球4,300所教育機構的近145,000名學生通過SolidWorks的培訓課程。 據(jù)世界上著名的人才招聘網(wǎng)站檢索,與其它3D CAD軟件相比,SolidWorks相關的招聘廣告比其它軟件的總合還要多,這一事實說明了越來越多的工程師和設計者使用SolidWorks三維軟件,越來越多的企業(yè)需要SolidWorks人才。Solidworks軟件功能強大,易于操作,界面人性化,技術創(chuàng)新,組件繁多是SolidWorks的五大特點。使得SolidWorks三維軟件成為目前全球領先的三維CAD解決方案。SolidWorks在設計時能夠為用戶提供不同的設計方案,通過方案的篩選,工程師能從中選擇合適的方案,從而在設計過程中降低設計的錯誤以及提高產(chǎn)品質(zhì)量。在目前市場上所見到的三維CAD解決方案中,SolidWorks是設計過程比較簡便又通俗易懂的軟件之一。它不僅提供如此人性化的系統(tǒng),同時對每個工程師和設計者,乃至整個機械行業(yè)提供了良好的發(fā)展基礎。SolidWorks軟件是世界上第一個基于Windows開發(fā)的三維CAD系統(tǒng),由于技術創(chuàng)新符合CAD技術的發(fā)展潮流和趨勢,SolidWorks公司于兩年間成為CAD/CAM產(chǎn)業(yè)中獲利最高的公司。良好的財務狀況和用戶支持使得SolidWorks每年都有數(shù)十乃至數(shù)百項的技術創(chuàng)新,公司也獲得了很多榮譽。該系統(tǒng)在1995-1999年獲得全球微機平臺CAD系統(tǒng)評比第一名;從1995年至今,已經(jīng)累計獲得十七項國際大獎,其中僅從1999年起,美國權威的CAD專業(yè)雜志CADENCE連續(xù)4年授予SolidWorks最佳編輯獎,以表彰SolidWorks的創(chuàng)新、活力和簡明。至此,SolidWorks所遵循的易用、穩(wěn)定和創(chuàng)新三大原則得到了全面的落實和證明,使用它,設計師大大縮短了設計時間,產(chǎn)品快速、高效地投向了市場。由于SolidWorks出色的技術和市場表現(xiàn),不僅成為CAD行業(yè)的一顆耀眼的明星,也成為華爾街青睞的對象。終于在1997年由法國達索公司以三億一千萬美元的高額市值將SolidWorks全資并購。公司原來的風險投資商和股東,以一千三百萬美元的風險投資,獲得了高額的回報,創(chuàng)造了CAD行業(yè)的世界紀錄。并購后的SolidWorks以原來的品牌和管理技術隊伍繼續(xù)獨立運作,成為CAD行業(yè)一家高素質(zhì)的專業(yè)化公司,SolidWorks三維機械設計軟件也成為達索企業(yè)中最具競爭力的CAD產(chǎn)品。 由于使用了Windows OLE技術、直觀式設計技術、先進的parasolid內(nèi)(由劍橋提供)以及良好的與第三方軟件的集成技術,SolidWorks成為全球裝機量最大、最好用的軟件。資料顯示,目前全球發(fā)放的SolidWorks軟件使用許可約28萬,涉及航空航天、機車、食品、機械、國防、交通、模具、電子通訊、醫(yī)療器械、娛樂工業(yè)、日用品/消費品、離散制造等分布于全球100多個國家的約3萬1千家企業(yè)。在教育市場上,每年來自全球4,300所教育機構的近145,000名學生通過SolidWorks的培訓課程。 據(jù)世界上著名的人才網(wǎng)站檢索,與其它3D CAD系統(tǒng)相比,與SolidWorks相關的招聘廣告比其它軟件的總和還要多,這比較客觀地說明了越來越多的工程師使用SolidWorks,越來越多的企業(yè)雇傭SolidWorks人才。據(jù)統(tǒng)計,全世界用戶每年使用SolidWorks的時間已達5500萬小時。在美國,包括麻省理工學院(MIT)、斯坦福大學等在內(nèi)的著名大學已經(jīng)把SolidWorks列為制造專業(yè)的必修課,國內(nèi)的一些大學(教育機構)如哈爾濱工業(yè)大學、清華大學、浙江工業(yè)大學、浙江大學、華中科技大學、北京航空航天大學、大連理工大學、北京理工大學、武漢理工大學等也在應用SolidWorks進行教學。Solidworks軟件功能強大,組件繁多。 Solidworks有功能強大、易學易用和技術創(chuàng)新三大特點,這使得SolidWorks 成為領先的、主流的三維CAD解決方案。SolidWorks 能夠提供不同的設計方案、減少設計過程中的錯誤以及提高產(chǎn)品質(zhì)量。SolidWorks 不僅提供如此強大的功能,而且對每個工程師和設計者來說,操作簡單方便、易學易用。 SolidWorks在現(xiàn)今社會階段逐漸廣泛應用,并且SolidWorks公司對中國市場重點開發(fā),日后SolidWorks應用將會更加完善,更加普遍。通過前文對SolidWorks的深入了解后,往后會對SolidWorks進行個別應用的分析,如建模,裝配,工程圖,力學分析等。 熟悉SolidWorks的工作環(huán)境;了解SolidWorks的命令,掌握在SolidWorks工作環(huán)境中文件的打開、保存、導入等基本操作,掌握三維建模流程。 掌握點、直線、矩形、弧度圓等基本圖形的繪制方法;掌握樣條、文字等高級幾何圖形的繪制方法;理解集合約束的概念并在草圖繪制中熟練應用幾何約束;熟練應用陣列、實體轉(zhuǎn)換等草圖繪制工具;能綜合應用各種草圖繪制實體和利用草圖繪制工具完成草圖繪。 清楚明白基于特征的建模方式、參數(shù)化思想等概念;靈活運用各種建立基準點的方法;靈活運用各種建立基準軸方法;靈活運用各種建立基準面的方法;靈活運用坐標系的建立方法;能根據(jù)建模需要綜合應用各種參考幾何體。 靈活運用拉伸特征的概念與建立方法;靈活運用旋轉(zhuǎn)特征的概念與建立方法;掌握掃描特征的概念與建立方法;靈活運用放樣特征的概念與建立方法;通過實踐能夠準確分析零件的特征,靈活運用拉伸和旋轉(zhuǎn)也正建立三維模型。綜合應用掃描、放樣、彎曲、鏡向、陣列等特征建立各種實體。 靈活運用用戶自定義工程圖格式文件的方法;靈活運用建立標準三視圖,剖視圖,斷面圖,局部圖,輔助視圖等方法;靈活運用各種注釋的方法。 靈活運用自底向上的裝配方法;靈活運用生成裝配體爆炸圖的方法;靈活運用SolidWorks智能裝配技術;靈活運用裝配體零部件的狀態(tài)和屬性控制,并能夠在裝配體中設計子裝配體;靈活運用干涉檢查;靈活運用自上向下的裝配方法;靈活運用在裝配模型工程圖中添加零件序號;靈活運用生成裝配體材料明細表的方法。 第二章 華晨寶馬齒輪齒條轉(zhuǎn)向器總體結構的設計 2.1 齒輪齒條轉(zhuǎn)向器的總體方案圖 本次設計的齒輪齒條轉(zhuǎn)向器采取的方案是:司機通過轉(zhuǎn)動方向盤,從而使轉(zhuǎn)向軸轉(zhuǎn)動,與轉(zhuǎn)向軸聯(lián)動的齒輪就開始轉(zhuǎn)動,從而帶動與轉(zhuǎn)向齒輪嚙合的齒條實現(xiàn)平行往返位移,而動力缸體兩端都有與車輪連接在一起的拉桿,這樣就能夠起到控制輪子左右轉(zhuǎn)動的作用,就起到了轉(zhuǎn)向的目的。其具體方案布局圖如下: 2.2 齒輪齒條轉(zhuǎn)向器的工作原理 齒輪齒條轉(zhuǎn)向器的工作原理為:通過轉(zhuǎn)動方向盤,從而使轉(zhuǎn)向軸轉(zhuǎn)動,與轉(zhuǎn)向軸聯(lián)動的齒輪就開始轉(zhuǎn)動,從而帶動與轉(zhuǎn)向齒輪嚙合的齒條實現(xiàn)平行往返位移,而動力缸體兩端都有與車輪連接在一起的拉桿,這樣就能夠起到控制輪子左右轉(zhuǎn)動的作用,就起到了轉(zhuǎn)向的目的。 2.3 傳動比的計算 2.3.1汽車方向盤 轉(zhuǎn)向盤的直徑 Dsw 有一系列尺寸。選用大的直徑尺寸時,會使駕駛員進出駕駛室感到困難。若選用小的直徑尺寸,轉(zhuǎn)向時,駕駛員要施加較大的力量,從而使汽車難于操縱,據(jù)原始數(shù)據(jù),參見手冊取 Dsw=400 mm 則由作用方向盤上的力矩得作用在方向盤上的力 Fh=Mh=25Nm; MhRsw=2.5104200=125N; 2.3.2 轉(zhuǎn)向阻力矩f=Mr式中: f --滑動摩擦系數(shù),一般?。?7; P--輪胎氣壓; G1---前軸載荷; 則Mr=f=328.8Nm ; 2.3.3 角傳動比與力傳動比 轉(zhuǎn)向系的傳動比由轉(zhuǎn)向系的角傳動比iwo和轉(zhuǎn)向系的力傳動比ip組成。從輪胎接觸地面中心作用在兩個轉(zhuǎn)向輪上的合力2 Fw 與作用在方向盤上的手力Fh 之比稱為力傳動比ip 。方向盤的轉(zhuǎn)角和駕駛員同側的轉(zhuǎn)向輪轉(zhuǎn)角之比稱為轉(zhuǎn)向系角傳動比 i wo 。它又由轉(zhuǎn)向器傳動比 i w 轉(zhuǎn)向傳動裝置角傳動比 i w 所組成。力傳動比與轉(zhuǎn)向系角傳動比的關系ip=2 Fw Fh而FW和作用在轉(zhuǎn)向節(jié)上的轉(zhuǎn)向阻力矩Mr有以下關系 Fw=Mr a作用在方向盤上的手力F h 可由下式表示 Fh=Mh Rsw; 側ip=2MrRswMha,若忽略磨擦損失側2Mr=ψXiwo; 由式可知,力傳動比與 Rswa和iwo有關,a 愈小,i p 愈大,轉(zhuǎn)向愈輕便。 由以上過程可計算出結果如下:iwo=2XMr; 1) 角傳動比 Mh=2328.8=657.6; 2) 力傳動比ip = iwoRswa式中a=1;B=0.5175 = 87.5 mm 則ip=iwoRswaX87.5=43.5; 2.4 齒輪的設計 2.4.1 齒輪參數(shù)的選擇 齒輪模數(shù)值取值為 m=1 ,主動齒輪齒數(shù)為 z=23,壓力角取α=20,齒輪螺旋角為β= 12 ,齒條齒數(shù)應根據(jù)轉(zhuǎn)向輪達到的值來確定。齒輪的轉(zhuǎn)速n=10r/min,齒輪 傳動力矩25Nm ,轉(zhuǎn)向器每天工作8小時,使用期限不低于5年,主動小齒輪選用40Cr,材料制造并經(jīng)滲碳淬火,而齒條常采用40Cr鋼或 41Cr4 制造并經(jīng)高頻淬火,表面硬度均應在 56HRC 以上。為減輕質(zhì)量,采用40Cr鋼制作。 2.4.2齒輪幾何尺寸確定 法向齒厚為h=ha+hf=4.25+1.375=5.625mm 分度圓直徑d =mz/cosβ= 123=23mm; da =d+2ha=15.337+9.5=24.837mm; df=d-2hf=15.337-2.475 =22.587 mm; db=dcosα=15.337cos 20=14.412mm; 分度圓直徑與齒條運動速度的關系 齒距 p=πm=3.142.5=7.85mm; 根據(jù)d=60000v/πn1;則v=0.001m/s; 齒輪中心到齒條基準線距離H=d/2+xm=11.5mm 2.4.3齒根彎曲疲勞強度計算 (1)接觸應力的計算 由文獻[4]表可知,齒面接觸應力計算公式,即 (3.28) 確定公式內(nèi)的各計算數(shù)值 ① 計算載荷系數(shù) 電動機驅(qū)動,載荷平穩(wěn),由文獻[4]表可知,取 平均分度圓直徑 mm 平均分度圓圓周速度 m/s 由文獻[4] 圖(a)可知,按,得; 由文獻[4] 圖(b)可知,按,齒輪懸臂布置,; 由文獻[4]表可知,; ② 由文獻[1]表可知,彈性系數(shù); ③ 節(jié)點區(qū)域系數(shù) 計算得, MPa (1) 接觸疲勞強度的許用應力 由文獻[4] 表可知,許用接觸應力計算公式,即 (3.29) 確定公式內(nèi)的各計算數(shù)值 ①小齒輪的接觸疲勞強度極限MPa ②最小安全系數(shù) ③由文獻[1,10-13]可知,計算應力循環(huán)系數(shù) 由文獻[1] 圖10-19可知,查得接觸疲勞壽命系數(shù) , ④尺寸系數(shù) ⑤工作硬化系數(shù),按 ⑥潤滑油膜影響系數(shù), 計算得, MPa (3)由于MPaMPa,故安全。 (1)齒根應力的計算 由文獻[4]表可知,彎曲應力計算公式,即 (3.30) 確定公式內(nèi)的各計算數(shù)值 ① 由文獻[1]表可知, , ② 由文獻[1]表可知, , 計算得,MPa (2)彎曲強度的齒根許用應力 由文獻[4]表可知,齒根許用應力計算公式,即 (3.31) 確定公式內(nèi)的各計算數(shù)值 ①彎曲疲勞極限MPa ③ 齒輪的應力修正系數(shù) ④ 彎曲強度的最小安全系數(shù) ⑤ 彎曲疲勞壽命系數(shù) , ④彎曲疲勞的尺寸系數(shù) 計算得, (3) 由于MPaMpa,故安全。 2.4.4齒輪精度等級、材料及參數(shù)的選擇 齒輪共有13個精度等級,用數(shù)字0~12由低到高的順序排列,0級最高,12級最低。齒輪精度等級的選擇,應根據(jù)傳動的用途、使用條件、傳動功率、圓周速度、性能指標或其他技術要求來確定。表13給出了不同機械傳動中齒輪采用的精度等級。表14推薦了5~9級精度齒輪所采用的切齒方法和使用范圍等。具體不同機械傳動中齒輪采用的精度等級如下圖所示: 2.5 齒條的設計 根據(jù)齒輪齒條的嚙合特點: (1) 齒輪的分度圓永遠與其節(jié)圓相重合,而齒條的中線只有當標準齒輪正確安裝時才與其節(jié)圓相重合. (2) 齒輪與齒條的嚙合角永遠等于壓力角。 因此,齒條模數(shù) m=1,壓力角α=20 齒條斷面形狀選取圓形, 選取齒數(shù) z=23螺旋角β= 8齒厚mt= m / cos β = 2.5 / cos 8 = 2.5253mm; αt=tanα/cosβ=tan20/cos8=0.367; Pn =πmn = 3.14 2.5 = 7.85mm Pt = πmt = 3.14 2.5253 = 7.929mm; han=1 X C n = 0.25 ? ha = m n han + χ n = 3 (1 + 0.7) = 4.25mm; hf=mn(han+cnχ n ) = 2.5 (1 + 0.25 ? 0.7) = 1.375mm; h=ha+hf=4.25+1.375=5.625mm; (1)選擇材料及確定需用應力 小齒輪選用45號鋼,調(diào)質(zhì)處理,HB=236 由《機械零件設計手冊》查得 (2) 確定各種參數(shù) 齒輪按 8等級精度制造 由于原動機為電動機,載荷平穩(wěn),,一般按照中等沖擊載荷計算。查《機械設計基礎》得: 取K=1.3 查《機械設計基礎》11—4取: 區(qū)域系數(shù) ZH=2.5 彈性系數(shù) ZE=188.0 查《機械設計基礎》教取:齒寬系數(shù) 由 (3)按齒面接觸強度設計計算 齒數(shù)取Z1=24 故實際傳動比由于是齒輪齒條傳動則i=1 模數(shù) 我們?nèi)=1.5 齒寬 , 取b=18mm (4)驗算齒輪彎曲強度 齒形系數(shù)YFa1=2.56,YSa1=1.63 YFa2=2.24,YSa2=1.76 由式 ,安全。 (5)計算齒輪圓周轉(zhuǎn)速v并選擇齒輪精度 此速度合適 其他計算從略。 所得小齒輪的基本參數(shù)如下: (1)分度圓直徑d1 d1=m*z1=1.5*24=36mm (2)齒頂高ha1 ha1=ha*m=1*1.5=1.5mm (3)齒根高hf1 hf1=(ha+c)*m=(1+0.2)*1.5=1.8mm (4)齒高h1 h1=ha1+hf1=1.5+1.8=3.3mm (5)齒頂圓直徑da1 da1=d1+2*ha1=36+2*1.5=39mm (6)齒根圓直徑df1 df1=d1-2*hf1=36-2*1.8=32.4mm (7)基圓直徑db1 db1=d1*cos(α)=36*0.939693=33.83mm (8)齒頂圓壓力角 αa1=arcos(db1/da1)=arcos(33.8289/39)=29.84 (9)端面重合度 Σα=1/2/π*(z1*(tan(αa1)-tan(α))+z2*(tan(αa2)-tan(α))) =1/2/π*(24*(0.573659-0.36397)+60*(0.457418-0.36397))=1.69 (10)縱向重合度Σβ=0 (11)總重合度 Σγ=Σα=1.69 2.3.2齒條的設計 齒輪作回轉(zhuǎn)運動,齒條作直線運動,齒條可以看作一個齒數(shù)無窮多的齒輪的一部分,這時齒輪的各圓均變?yōu)橹本€,作為齒廓曲線的漸開線也變?yōu)橹本€。齒條直線的速度與齒輪分度圓直徑、轉(zhuǎn)速之間的關系為 本次設計中V=50mm/s 式中 d——齒輪分度圓直徑,;小齒輪分度圓直徑為36mm ——齒輪轉(zhuǎn)速,。齒輪轉(zhuǎn)速為37.5r/min 其嚙合線與齒輪的基圓相切,由于齒條的基圓為無窮大,所以嚙合線與齒條基圓的切點在無窮遠處。 齒輪與齒條嚙合時,不論是否標準安裝(齒輪與齒條標準安裝即為齒輪的分度圓與齒條的分度圓相切),其嚙合角恒等于齒輪分度圓壓力角,也等于齒條的齒形角;齒輪的節(jié)圓也恒與分度圓重合。只是在非標準安裝時,齒條的節(jié)線與分度線不再重合。 齒輪與齒條正確嚙合條件是基圓齒距相等,齒條的基圓齒距是其兩相鄰齒廓同側直線的垂直距離,即。 齒輪與齒條的實際嚙合線為,即齒條頂線及齒輪齒頂圓與嚙合線的交點及之間的長度。 齒輪齒條傳動的幾何尺寸計算 齒輪與齒條傳動的尺寸計算見表 表 齒輪齒條傳動的幾何尺寸計算 項目名稱 計算公式及代號 轉(zhuǎn)齒輪齒條數(shù)值 齒輪齒數(shù) 24 模數(shù) 1.5 螺旋角 基本齒廓 壓力角 齒頂高系數(shù) 1 頂隙系數(shù) 0.25 齒輪變位系數(shù) 0 尺寬 齒輪 18 齒條 20 齒條長度 450 項目名稱 計算公式及代號 轉(zhuǎn)齒輪齒條數(shù)值 齒輪分度圓直徑 36 齒頂高 齒輪 1.5 齒條 1.5 齒根高 齒輪 1.88 齒條 1.88 齒高 齒輪 3.38 齒條 齒輪中心到齒條中心距 18 齒距 4.71 齒條齒數(shù) 96 2.6 齒輪軸的設計 由于齒輪的基圓直徑db=23,數(shù)值較小,若齒輪與軸之間采用鍵連接必將對軸 和齒輪的強度大大降低,因此,將其設計為齒輪軸。由于主動小齒輪選用45#材料制造并經(jīng)滲碳淬火,因此軸的材料也選用40Cr,材料制造并經(jīng)滲碳淬火。 查表得:40Cr材料的硬度為60HRC,抗拉強度極限 [σB]=1100 MPa ,屈服極限[σS ]=850MPa ,彎曲疲勞極限 [σT]=525MPa ,剪切疲勞極限 [τ1 ] = 300 MPa ,轉(zhuǎn)速 n=10r/min 忽略磨損,根據(jù)能量守衡,作用在齒輪齒條上的阻力矩為 M r = 328.8 N m ,作用在齒輪上的軸向力為F=Mr328.8 sin 20 = sin 20 = 12.23 N ,作用在齒輪上的切向力為F=彎曲疲勞強度校核Mr 328.8 cos 20 = cos 20 = 33.77 Nr 9.15σ1 =F/ πr 2 = 33.77 /3.14 5 2 = 0.43 MPa< 525MPa。 剪切疲勞強度校核τ1=F/ πr2 = 33.77/3.14 42 = 0.672MPa <300MPa 抗拉強度校核 滿載時的阻力矩為 Mr=328.8Nm, 齒輪軸的最小直徑為d=8mm,在此截面上的軸向抗拉強度為σB=F/πr2 =1 1.55/3.14142=0.229MPa<1100Mpa本設計選擇齒輪軸直徑 D=40。 傳動軸的材料選擇、熱處理方式,許用應力的確定。選擇45鋼正火。硬度達到170~217HBS,抗拉強度=600MPa,屈服強度=355MPa。[]=55MPa 計算d1,按下列公式初步計算出軸的直徑,輸出軸的功率P和扭矩T 最小直徑計算(查《機械設計基礎》教材表15—3 取 c=110) 考慮鍵槽 與齒輪嚙合的傳動軸軸徑我們?nèi)?0mm。 根據(jù)與大同步帶輪相配合,本次設計中,取=30mm; 中間軸段軸徑為30mm,兩端軸徑為20mm。 傳動軸的校核 作用在傳動軸上的圓周力: 徑向力: 求垂直面的支反力 計算垂直彎矩: 求水平面的支承力: 計算、繪制水平面彎矩圖: 求危險截面當量彎矩: 從圖可見,m-m,n-n處截面最危險,其當量彎矩為:(取折合系數(shù)) 計算危險截面處軸的直徑: n-n截面: m-m截面: 由于,所以該軸是安全的。 第3章 各主要零部件強度的校核 3.1滾動軸承的選擇 滾動軸承為深溝球軸承6205,由文獻[2]表得KN,KN,,。 (2)壽命驗算 軸承所受支反力合力 N (3.1) 對于雙列圓錐滾子軸承,派生軸向力互相抵消。 ,N 由文獻[2]表得, , N (3.2) 按軸承B的受力大小驗算 h (3.3) h=年 由于齒輪齒條轉(zhuǎn)向器的運轉(zhuǎn)平穩(wěn),必須選擇較大壽命的軸承,軸承能達到所計算的壽命。 經(jīng)審核后,此軸承合格。 3.2傳動軸強度的校核計算 根據(jù)以上工況可知: 力: 徑向力: 求垂直面的支反力 計算垂直彎矩: 求水平面的支承力: 計算、繪制水平面彎矩圖: 求危險截面當量彎矩: 從圖可見,m-m,n-n處截面最危險,其當量彎矩為:(取折合系數(shù)) 計算危險截面處軸的直徑: n-n截面: m-m截面: 由于,所以該軸是安全的。 第四章 齒輪齒條轉(zhuǎn)向器中主要零件的三維建模 4.1方向盤的三維建模 4.2轉(zhuǎn)向軸的三維建模 4.3動力缸體的三維建模 4.4齒輪齒條轉(zhuǎn)向器的三維建模 第五章三維軟件設計總結 通過本次設計,再次提出了利用三維軟件的水平,并吸收了大量的經(jīng)驗,總結出以下幾點。關于圖紙的繪制方面,當零件的尺寸已經(jīng)給出,不考慮圖紙尺寸不合適的,基于三維零件圖,裝配時必須考慮的大小是合適的,因為AutoCAD繪圖效果不好,也會引起的尺寸誤差,和甚至出現(xiàn)欠定義大小,因此,必須通過在這個時候?qū)α慵M行測量,進行修改,直到符合要求。該工具是方便的輸入數(shù)據(jù)映射,通過選擇部分的類型,標準件,可以生成,但有時需要在工具集使用部分可能找不到,所以在這個時候隨機應變,其他部分而不是通過修改或滿足要求增加組件的使用。三維地圖應該是靈活的,解決問題的方法總比問題多,當一個方法不能正常映射,試試另一種方法,它不僅可以完成零件的生產(chǎn),而且還可以開發(fā)映射一個更好的主意,并打破了新思想的規(guī)則。 學習使用一些可以節(jié)省時間的命令,如鏡像,陣列,能省則省”。在裝配過沉重,曾給了我一個很大的障礙,是要花很多時間去找出為什么。在一個活躍的子組件,雖然活動范圍會產(chǎn)生干擾,可以設置該復合物的活動范圍,如先進的范圍內(nèi),和角度范圍,即使在這個范圍內(nèi)不影響母配體,不能設置。因為一旦設定的范圍內(nèi),在父組件將被視為完全定義的組件模型,它將沖突分總成,將無法完成裝配??吹貓D是最重要的任務是理解零件圖,圖表工具,沒有工具是沒有法律的零件圖,所以不要急著寫,想通過零件的結構,并認為通過線圖,這是重中之重,映射。部分建模,一般應的特點進行深入分析,找出零件是由幾個特點,擺脫所有的形狀特點,它們之間的連接相對位置、表面,然后按主次特征造型的關系,按一定的順序。一個復雜的部分,有許多簡單的功能,通過切除或重疊相交。所以部分建模,序列特征是很重要的,雖然不同的建模過程可以構造出相同的實體部分,但其建模過程和實體結構的穩(wěn)定性有直接的影響,實體模型可以修改應用程序,可理解性和實體模型。特別是在二維圖紙,我們只能看到元器件的布局,并用虛線給說的內(nèi)部特征,除了部分的相貫線,這條線各特征在路口出現(xiàn)。在選秀過程中零件,必須選擇第一個草圖平面,這是非常重要的,決定了后續(xù)的模型飛機的命令,使用簡單的說,一個圓柱形圍成一個圈,然后繪制,也可以作為一個長方體旋轉(zhuǎn),雖然他們的結果都是一樣的,但草圖平面和命令的使用。如果我們想要一個軸,那么我們應該選擇第二個方法以及。 由于該零件的設計不規(guī)則零件,用于為拉伸和旋轉(zhuǎn)命令,許多零部件都是對稱的,所以為了節(jié)省時間,提高效率,通常用于指揮鏡特性。 一個完整的工程圖紙應該包含以下4個方面。 一組視圖:一組視圖(包括視圖,剖面,斷面,局部視圖)是正確的,完整的,對各部分的結構和形狀表達清楚。 尺寸:尺寸的確定和零件的形狀各部分的位置 技術要求:表明部分的一些要求必須在制造和檢驗完成,如表面粗糙度,尺寸公差,形位公差,材料和熱處理的方法和指標。 標題欄:注明產(chǎn)品名稱,材料,數(shù)量,拉伸比和拉伸,等。 單擊[新建]圖標以顯示新的文件系統(tǒng),SolidWorks文件”對話框中,單擊“選項”對話框中的組件,你可以進入裝配工作模式,進行以后的設計工作。 結 論 在最近的一段時間的畢業(yè)設計,使我們充分把握的設計方法和步驟,不僅復習所學的知識,而且還獲得新的經(jīng)驗與啟示,在各種軟件的使用找到的資料或圖紙設計,會遇到不清楚的作業(yè),老師和學生都能給予及時的指導,確保設計進度本文所設計的是華晨寶馬齒輪齒條轉(zhuǎn)向器的設計,通過初期的定稿,查資料和開始正式做畢設,讓我系統(tǒng)地了解到了所學知識的重要性,從而讓我更加深刻地體會到做一門學問不易,需要不斷鉆研,不斷進取才可要做的好,總之,本設計完成了老師和同學的幫助下,在大學研究的最后,發(fā)自內(nèi)心地感謝我的老師和同學們的幫助,因為有了大家的幫助和支持,我才能夠順利地完成這次的畢業(yè)論文,最后,向大家表示深深的感謝和祝福。 參考文獻 [1]張福學編著.齒輪齒條轉(zhuǎn)向器技術及其應用.北京:電子工業(yè)出版社,2000。 [2]何發(fā)昌著,邵遠編著.齒輪齒條轉(zhuǎn)向器的原理及應用.北京:高等教育出版社,1996。 [3]宋學義著. 齒輪齒條轉(zhuǎn)向器速查手冊. 北京:機械工業(yè)出版社,1995.3。 [4]陳奎生著. 氣與氣壓傳動. 武漢:武漢理工大學出版社,2008.5。 [5]SMC(中國)有限公司. 華晨寶馬齒輪齒條轉(zhuǎn)向器實用氣動技術. 北京:機械工業(yè)出版社,2003.10 [6]徐文燦著. 華晨寶馬齒輪齒條轉(zhuǎn)向器系統(tǒng)設計. 北京:機械工業(yè)出版社,1995。 [7]曾孔庚.小型料齒輪齒條轉(zhuǎn)向器的發(fā)展趨勢. 機器人技術與應用論壇。 [8]壽慶豐 機械設計1999年第3期,第3卷。 [9]高微,楊中平,趙榮飛等.華晨寶馬齒輪齒條轉(zhuǎn)向器臂結構優(yōu)化設計. 機械設計與制造2006.1。 [10] 黃長藝,嚴普強.機械工程測試技術基礎. 機械工業(yè)出版社,2001.1. [11] 張桓,陳作模.機械原理.高等教育出版社,2000.8. [12]孫兵,趙斌,施永輝.華晨寶馬齒輪齒條轉(zhuǎn)向器的研制. 中國期刊全文數(shù)據(jù)庫。 [13]馬光,申桂英.工業(yè)機器人的現(xiàn)狀及發(fā)展趨勢. 中國期刊全文數(shù)據(jù)庫2002年。 [14]李如松.華晨寶馬齒輪齒條轉(zhuǎn)向器的應用現(xiàn)狀與展望. 中國期刊全文數(shù)據(jù)庫1994年第4期。 [15]李明.單臂回轉(zhuǎn)式華晨寶馬齒輪齒條轉(zhuǎn)向器設計.制造技術與機床2005年第7期。 [16]李杜莉,武洪恩,劉志海.華晨寶馬齒輪齒條轉(zhuǎn)向器的運動學分析. 煤礦機械2007年2月[17]成大先主編.機械設計手冊(第三版).北京:化學工業(yè)出版社,1994。 [17]Hirohiko Arai, Kazuo Tanie, and Susumu Tachi. Dynamic Control of a Manipulator with Passive Joints in Operational Space. 致 謝 時間如流水,經(jīng)過幾個月的努力和付出,我的論文總算完成了!感謝您這四年對我們的諄諄教導,您不僅在學習學業(yè)上給我以精心的指導,同時還在思想給我以無微不至的關懷支持和理解,給予我人生的啟迪,使我在順利地完成??齐A段的學業(yè)同時,也學到了很多有用的做人的道理,明確了人生目標。知道自己想要什么,知道以后的人生目標是什么,通過這幾年的學習,讓我知道了我們親愛的導師嚴謹求實的治學態(tài)度,以及認真對待每個同學畢設的工作態(tài)度和務實的行為規(guī)范。也讓我懂得了對待任何事情都需要仔細,認真,不能有絲毫的馬虎。經(jīng)過近半年努力的設計與計算,通過查找了各類手冊論文終于可以完成了,我感到很開心,也很激動,因為這是我知識的積累。雖然它不是最完美的,也不是最好的,但是在我心里,它是我最珍惜的,因為我自己已經(jīng)盡力的做了,它是我用心、用汗水成就的,也是我在大學四年來對所學知識的應用和體現(xiàn)。四年的學習和生活,不僅豐富了我的知識,而且鍛煉了我的個人能力,更重要的是從周圍的老師和同學們身上潛移默化的學到了許多有用的知識。- 配套講稿:
如PPT文件的首頁顯示word圖標,表示該PPT已包含配套word講稿。雙擊word圖標可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設計者僅對作品中獨創(chuàng)性部分享有著作權。
- 關 鍵 詞:
- 寶馬 齒輪 齒條 轉(zhuǎn)向器 設計
裝配圖網(wǎng)所有資源均是用戶自行上傳分享,僅供網(wǎng)友學習交流,未經(jīng)上傳用戶書面授權,請勿作他用。
鏈接地址:http://m.jqnhouse.com/p-6403798.html