【溫馨提示】====【1】設計包含CAD圖紙 和 DOC文檔,均可以在線預覽,所見即所得,,dwg后綴的文件為CAD圖,超高清,可編輯,無任何水印,,充值下載得到【資源目錄】里展示的所有文件======【2】若題目上備注三維,則表示文件里包含三維源文件,由于三維組成零件數量較多,為保證預覽的簡潔性,店家將三維文件夾進行了打包。三維預覽圖,均為店主電腦打開軟件進行截圖的,保證能夠打開,下載后解壓即可。======【3】特價促銷,,拼團購買,,均有不同程度的打折優(yōu)惠,,詳情可咨詢QQ:1304139763 或者 414951605======【4】 題目最后的備注【LB系列】為店主整理分類的代號,與課題內容無關,請忽視
密 級
分類號
編 號
成 績
本科生畢業(yè)設計 (論文)
外 文 翻 譯
原 文 標 題
Vehicle dynamics control architecture
譯 文 標 題
汽車動態(tài)控制結構
作者所在系別
機電工程學院
作者所在專業(yè)
車輛工程
作者所在班級
B13141
作 者 姓 名
戴維
作 者 學 號
201322088
指導教師姓名
臧繼嵩
指導教師職稱
實驗師
完 成 時 間
2017
年
3
月
北華航天工業(yè)學院教務處制
譯文標題
汽車動態(tài)控制結構
原文標題
Vehicle dynamics control architecture
作 者
Rochester
譯 名
羅徹斯特
國 籍
美國
原文出處
GM Global Technology Operations, Inc. (Detroit, MI, US)
摘要:車輛包括多個子系統(tǒng)和用于在其上實現正常控制的相應控制器。 車輛還包括車輛動態(tài)控制器,用于為子系統(tǒng)控制提供高優(yōu)先級子系統(tǒng)命令,以實現車輛動態(tài)增強。 車輛動態(tài)控制器包括多個可獨立分解和可重新配置的軟件組件或層和可訪問的層間總線結構。
關鍵詞:汽車動力 改進 控制器
技術領域
本發(fā)明總體上涉及車輛動力學控制。 更具體地,本發(fā)明涉及車輛動態(tài)控制系統(tǒng)架構。
背景技術
車輛穩(wěn)定性控制已經從基于制動和牽引力控制(制動和動力系轉矩管理)技術的第一代系統(tǒng)發(fā)展到包括制動器,動力系,轉向和懸架阻尼子系統(tǒng)的獨立和協(xié)調控制的更近的系統(tǒng)。通常,分布式控制模塊用于與相應的致動器直接接口以實現期望的子系統(tǒng)控制。這種子系統(tǒng)控制的協(xié)調和權限可以通過監(jiān)督控制來處理。
除了車輛穩(wěn)定性控制的復雜性和復雜性之外,受影響的車輛子系統(tǒng)具有高度集成和重疊,最顯著的是在用于實現期望的車輛穩(wěn)定性的各種子系統(tǒng)控制中利用的車輛級別參數的共性增強。車輛級的參數共性表明處理器利用率,通信帶寬消耗,多平臺應用和軟件靈活性的效率和其他機會。這在通過與相應子系統(tǒng)控制(例如轉向,制動,動力系扭矩,懸架阻尼)相關聯的各種分布式控制模塊來影響穩(wěn)定性增強的車輛穩(wěn)定性控制系統(tǒng)中甚至可能更加尖銳,其中協(xié)調和權限通過中央監(jiān)督控制。
軟件組件的系統(tǒng)重用促進了低成本,快速上市和廣泛可用的車輛系統(tǒng)。顯著的優(yōu)點直接來自應用程序開發(fā)成本,時間,驗證,可維護性和靈活性等優(yōu)勢,這些常見軟件資產提供。
因此,期望車輛動態(tài)系統(tǒng)的特征在于高度的軟件組件可用性和訪問以實現和促進重用,可維護性,公共驗證和開發(fā),成本和時間節(jié)省以及多平臺利用。
發(fā)明內容
本發(fā)明是一種新穎的車輛動態(tài)控制系統(tǒng),包括至少一個車輛子系統(tǒng),其通常根據由至少一個相應子系統(tǒng)控制器確定的子系統(tǒng)控制來控制。 該系統(tǒng)還包括車輛動態(tài)控制器,用于提供高優(yōu)先級子系統(tǒng)命令以由至少一個相應子系統(tǒng)控制器實現。 車輛動態(tài)控制器還包括多層軟件組件和層間總線,由此分解和重組車輛動態(tài)控制器的所選多層軟件組件,而不影響所述車輛動態(tài)特性的多層軟件組件中的其他多個軟件組件 控制器和對車輛動態(tài)控制器的層間總線中所選擇的層的訪問。
本發(fā)明的這些和其它優(yōu)點和特征將從以下描述,權利要求和附圖中變得顯而易見。
具體實施方式
在圖1中示意性地示出了車輛動態(tài)控制系統(tǒng)12。與各種車輛子系統(tǒng)相關聯的多個致動器13對車輛11施加各種力以增強穩(wěn)定性并且響應于諸如方向盤角度,車輛速度等的輸入維持預期路徑。車輪速度和車輛橫擺率。例如,在主動前轉向(AFS)系統(tǒng)中,前車輪的轉向角受到命令實現期望的車輛穩(wěn)定性增強的轉向致動器系統(tǒng)的影響。在制動/動力系車輛穩(wěn)定性增強(VSE)系統(tǒng)中,單獨的車輪制動和動力系扭矩可以通過各種技術(例如,火花正時,氣缸停用,發(fā)動機加燃料等)通過調制的液壓制動壓力和發(fā)動機輸出扭矩控制來影響。等等。)。在半主動懸架系統(tǒng)中,懸架阻尼特性可以以實現期望的車輛穩(wěn)定性增強的方式改變。其它系統(tǒng),包括但不限于其中彈簧剛度可改變的主動懸架,以及后輪轉向角可改變的主動輪轉向,同樣在本發(fā)明的應用范圍內。
每個這樣的車輛子系統(tǒng)具有與其相關聯的一個或多個控制模塊14.這種子系統(tǒng)可以以分布式控制方式操作,其中與特定子系統(tǒng)相關聯的每個控制單元通過命令控制子系統(tǒng)致動器13.除了在被動的貢獻意義之外,這樣的正??刂乒δ芡ǔ2慌c車輛動力學控制相關。例如,動力系控制器負責響應于操作者需求而實現一定量的輸出扭矩,并且負責在多速比自動變速器的速比換檔期間進行扭矩管理。動力系控制器通常還執(zhí)行可能涉及火花正時,氣缸停用,發(fā)動機加燃料等的排放臨界和燃料經濟性關鍵功能。轉向控制器負責可變輔助 - 在低速和停車操縱期間減小轉向力,并逐漸增加轉向力隨著車速的增加。四輪轉向控制還負責在低車速下在與前輪相反的方向上控制后輪的轉向角,并且在較高車速下在相同方向上控制后輪的轉向角。懸架控制器同樣負責根據車輛速度來調整車輛的行駛特性,主要是通過在低車輛速度下減小阻尼來為操作者提供舒適感,并且通過在較高車輛速度下增加阻尼來改善高速公路感覺。
車輛11,子系統(tǒng)致動器13和子系統(tǒng)控制器14都向車輛動態(tài)控制器10提供各種輸入信號16,用于在車輛動態(tài)控制程序中使用。車輛輸入可以包括例如偏航速率,橫向加速度和車輛速度。致動器輸入可以包括例如阻尼器位置和行車輪角度。子系統(tǒng)控制器輸入可以包括例如單獨制動轉角致動超控,制動系統(tǒng)混合項,沖擊阻尼值超馳,AFS轉向致動器超控或額外轉向角。車輛11,子系統(tǒng)致動器13和子系統(tǒng)控制器14輸入信號優(yōu)選地通過控制器局域網(CAN)總線提供,但是可以采取離散傳感器信號輸入,串行通信線路等的形式。車輛動態(tài)控制器10轉向提供高優(yōu)先級控制命令18,用于超越,修改或適應子系統(tǒng)控制器14的正常控制,以便實現增強各個子系統(tǒng)致動器13的控制的車輛動態(tài)性。
車輛動態(tài)控制器10包括適于實現促進軟件組件的再使用,應用開發(fā)時間和成本降低,可維護性和多個車輛平臺適配等的期望目標的各種結構化處理層。重要的是,本發(fā)明不僅提高了大規(guī)模控制應用軟件組件的可重用性,而且提高了車輛接口,信號調節(jié),內部總線結構和輸出處理的可重用性。
從圖1中的車輛動力學控制器10的左側開始,在圖1中,示出了信號處理層15與來自車輛11,子系統(tǒng)致動器13和子系統(tǒng)控制器14的各種輸入信號16接口連接。信號處理層15經由內部傳感器總線22通信耦合到過程輸入層17。輸入層17還經由內部車輛動態(tài)性總線26通信耦合到車輛動力學/駕駛員意圖層19,這兩者在下文中描述。過程輸入層17又經由內部輸入總線24與車輛動力學/駕駛員意圖層19通信耦合。車輛動力學/駕駛員意圖層19還經由內部傳感器總線22與信號處理層15通信耦合。車輛動力學/駕駛員意圖層19又經由內部車輛動態(tài)性總線26耦合到控制系統(tǒng)層21.控制系統(tǒng)層21還經由內部傳感器總線22通信耦合到信號處理層15并經由內部輸入總線24處理輸入層17。系統(tǒng)層21又通過內部控制總線28與處理輸出層23通信耦合。處理輸出層23還通過內部輸入總線24與處理輸入層17通信耦合。處理輸出層23進而通信耦合到命令處理層25.最后,命令處理層25又經由CAN總線20通信耦合到各個子系統(tǒng)控制器14,以提供先前描述的控制命令18。
從車輛動態(tài)控制器10的先前描述可以理解,所描述的層提供軟件劃分,包括在車輛接口,信號調節(jié),內部總線結構和輸出處理,以提供上述優(yōu)點。層獨立性允許用于開發(fā)和維護的一個或多個層或軟件組件的期望的模塊化和分解/重組,而對任何剩余的層或軟件組件沒有實質影響。層間總線提供對在開發(fā)(例如用于調試和儀器)中有用的不同級別的輸入和輸出信號以及在車輛動態(tài)控制器內部和外部的不同程度的改進數據的精確利用的期望訪問。圖1的車輛動力學控制器的總體級分解的可用性10以及如此構造的經由內部總線的結構化層間訪問實現和促進軟件組件重用,應用開發(fā)時間和成本降低,可維護性和多個車輛平臺適配的目標。
關于參考圖1描述的車輛動態(tài)控制器10的各個層和層間通信的附加細節(jié)?,F在將參考其余的附圖來闡述圖1。 2-6。
開始。如圖2所示,信號處理層15包括功能塊31,用于從包括來自車輛11,致動器13和子系統(tǒng)控制器14的傳感器或派生物讀取基于CAN的信號。塊31通過內部接收通信耦合到CAN輸入轉換功能塊33 CAN總線32.塊31和33讀取信號,通過適當的電平診斷確保準確性和魯棒性,并將CAN信號轉換為工程單位原始輸入以供后續(xù)層使用。塊33通信耦合到內部傳感器總線22,用于將輸入與過程輸入層17,車輛動力學/駕駛員意圖層19和控制系統(tǒng)層21通信。
圖。圖3更詳細地示出了過程輸入層17,包括用于過濾內部傳感器總線22上的輸入的功能塊35,從而將輸入過濾集中到公共軟件組件。從塊35,經由內部濾波的輸入總線34,將濾波的輸入提供給功能塊37,用于調整輸入,例如,重心調整以用于偏移運動傳感器放置的感測的運動。從框37,通過內部調整的輸入總線36,將調整的輸入提供給功能塊39,用于使輸入居中 - 例如,去除傳感器偏置。還對車輛動態(tài)性總線26上提供的數據執(zhí)行定心功能。從框39,通過內部中心輸入總線38,將中心輸入提供給功能塊41,用于仲裁多個(即冗余)相關輸入,提供例如有效性確定,健全性檢查諸如輸入量值和最終確定來自多個相關輸入的單個有效輸入的事物。還對在車輛動力總線26上提供的數據執(zhí)行仲裁功能。功能塊43被提供用于從內部傳感器總線22上的輸入導出附加輸入,例如一階導數操作以從車輛橫擺率輸入提供車輛偏航加速度。從功能塊43和41,這樣的導出和仲裁輸入分別是通信耦合到內部輸入總線24,用于將輸入與車輛動態(tài)/驅動意圖層19,控制系統(tǒng)層21和過程輸出層23通信。
圖4更詳細地示出了包括多個示例性功能塊的車輛動力學/駕駛員意圖層19,用于確定車輛動力學控制器10的控制系統(tǒng)層21在確定用于實現的期望性和執(zhí)行命令時所需的各種參數,主動車輛動力學控制。所示的功能塊當然是各種參數確定的非窮盡性示例,包括:建模函數;以及計算,檢測,估計,預測或以其它方式確定的速率,限制,能力,條件,數量,誤差和狀態(tài)。如圖1中最佳地示出。如圖1所示,車輛動力學/駕駛員意圖層19分別從內部輸入總線24和內部傳感器總線22接收輸入和信號,并且經由內部車輛動態(tài)性總線26向控制系統(tǒng)層21提供參數輸入。
圖5更詳細地示出了包括車輛動態(tài)控制器10的控制系統(tǒng)層21的雙層監(jiān)控控制方面的控制系統(tǒng)層21.車輛運動監(jiān)控器45經由內部傳感器總線22從信號處理層15接收原始輸入,通過內部輸入總線24來自過程輸入層17的輸入,以及經由內部車輛動態(tài)總線26來自車輛動力學/駕駛員意圖層19的參數輸入。車輛運動監(jiān)視器45通信耦合到制動和推進監(jiān)視器47,轉向監(jiān)視器49和懸架管理器并且監(jiān)督各種車輛動態(tài)控制子系統(tǒng)監(jiān)控器47,49和51的協(xié)調。這些車輛動態(tài)控制子系統(tǒng)監(jiān)控器中的每一個還經由內部傳感器總線22從信號處理層15接收原始輸入,導出和仲裁的輸入從過程輸入層17經由內部輸入總線24,以及來自車輛動力學/駕駛員意圖層19的參數輸入。車輛動態(tài)控制子系統(tǒng)監(jiān)視器47,49和51由車輛運動監(jiān)視器45并且經由內部控制總線28向過程輸出層23提供相應的高優(yōu)先級控制命令輸入,最終用于超控,修改或適配子系統(tǒng)控制器14的正??刂?,以實現車輛動態(tài)增強各種子系統(tǒng)控制的控制,系統(tǒng)致動器13。
過程輸出層23通過內部控制總線28接收來自控制系統(tǒng)層21的高優(yōu)先級控制命令輸入以及通過內部輸入總線24從過程輸入層17導出和仲裁的輸入。過程輸出層23提供命令輸入以及導出和仲裁的輸入命令處理層25.另外,在開發(fā)期間,出于儀器目的,可以經由輸出總線30訪問命令輸入以及導出和仲裁的輸入,包括軟件調試和實驗目的。
圖。圖6更詳細地示出了命令處理層25,包括車輛動態(tài)控制器10的命令轉換和傳輸功能。命令處理層25包括功能塊53,用于將輸入的工程單元轉換成適合于通過CAN總線傳輸的CAN信號。另外,用于診斷目的的校驗和和滾動計數在命令處理層25的功能塊53中計算。塊53經由內部傳輸CAN總線40被通信耦合到傳輸CAN驅動器功能塊55.塊55管理高優(yōu)先級用于超控,修改或適應子系統(tǒng)控制器14的正常控制的控制命令18,以便實現增強各個子系統(tǒng)致動器13的控制的車輛動力學。
已經關于某些示例性實施例描述了本發(fā)明。然而,應當理解,在不脫離如所附權利要求所限定的本發(fā)明的范圍的情況下,本發(fā)明的各種修改和替代實施方式。
外文文獻
[1]CD Carter,RD Mstthews.Design of Formula SAE Race Car:VehicleDynamics andPerformance.Sae Intemational Off-highway,1982
附錄:
Vehicle dynamics control architecture
Abstract: A vehicle includes a plurality of sub-systems and corresponding controllers for effecting normal control thereover. The vehicle further includes a vehicle dynamics controller for providing high-priority sub-system commands for sub-system control to effect vehicle dynamics enhancements. The vehicle dynamics controller includes a plurality of independently decomposable and recomposable software components or layers and accessible inter-layer bus structure.
Keywords: vehicle dynamics enhancements controllers
TECHNICAL FIELD
The present invention is generally related to vehicle dynamics control. More particularly, the invention relates to the vehicle dynamics control system architecture.
BACKGROUND OF THE INVENTION
Vehicle stability controls have progressed from first generation systems based upon braking and traction control (braking and powertrain torque management) technologies to more recent systems including independent and coordinated controls of brake, powertrain, steering and suspension damping sub-systems. Typically, distributed control modules are employed to directly interface with respective actuators to effect the desired sub-system controls. Coordination and authority of such sub-system control may be handled by way of a supervisory control.
Apart from the complexity and sophistication of vehicle stability controls, there is a high degree of integration and overlap of the affected vehicle sub-systems, most notably in the commonality of vehicle level parameters utilized across various sub-system controls for effecting the desired vehicle stability enhancements. Parametric commonality at the vehicle level suggests efficiency and other opportunities in processor utilization, communication bandwidth consumption, multi-platform application and flexibility of software. This may be even more acute in vehicle stability control systems which effect stability enhancement through a variety of distributed control modules associated with respective sub-system control (e.g. steering, braking, powertrain torque, suspension damping) wherein coordination and authority are handled through a central supervisory control.
Systematic reuse of software components promotes low-cost, quick-to-market and widely available vehicle systems. Significant benefits result directly from the application development cost, time, validation, maintainability and flexibility advantages afforded by such common software assets.
Therefore, it is desirable that a vehicle dynamics system be characterized by a high degree of software component availability and access to enable and promote reuse, maintainability, common validation and development, cost and time savings, and multi-platform utilization.
SUMMARY OF THE INVENTION
The present invention is a novel vehicle dynamics control system including at least one vehicle sub-system normally controlled in accordance with sub-system controls determined by at least one respective sub-system controller. The system further includes a vehicle dynamics controller for providing high priority sub-system commands for implementation by the at least one respective sub-system controller. The vehicle dynamics controller further includes multi-layer software components and inter-layer busses whereby decomposition and recomposition of selected ones of said multi-layer software components of the vehicle dynamics controller without affecting other ones of the multi-layer software components of said vehicle dynamics controller and access to selected ones of the inter-layer busses of the vehicle dynamics controller are enabled thereby.
These and other advantages and features of the invention will become apparent from the following description, claims and figures.
DESCRIPTION OF THE PREFERRED EMBODIMENT
A vehicle dynamics control system 12 is schematically illustrated in FIG. 1 and includes vehicle 11 and vehicle dynamics controller 10. A plurality of actuators 13 associated with various vehicle sub-systems effect various forces upon vehicle 11 to enhance stability and maintain an intended path in response to such inputs as steering wheel angle, vehicle speed, wheel speed and vehicle yaw rate among others. For example, in an active front steering (AFS) system, the steering angle of the front vehicle wheels is affected by way of a steering actuator system that is commanded to effect the desired vehicle stability enhancement. In a braking/powertrain vehicle stability enhancement (VSE) system, individual wheel braking and powertrain torque may be affected by way of modulated hydraulic brake pressure and engine output torque control through a variety of techniques (e.g. spark timing, cylinder deactivation, engine fueling, etc.). In a semi-active suspension system, suspension damping characteristics may be altered in a manner to effect a desired vehicle stability enhancement. Other systems, including but not limited to active suspensions wherein spring rates are alterable, and active rear steering where rear wheel steering angle is alterable, are equally within the scope of application of the present invention.
Each such vehicle sub-system has associated therewith one or more control modules 14. Such sub-systems are operable in a distributed control fashion wherein each control unit associated with a particular sub-system is responsible for normal control functions thereof by commanding the control of the sub-system actuators 13. Such normal control functions generally are not related to vehicle dynamics control other than in a passive, contributory sense. For example, a powertrain controller is responsible for effecting an amount of output torque in response to an operator demand and for torque management during ratio shifting of a multi-speed ratio automatic transmission. The powertrain controller also normally performs emission critical and fuel economy critical functions which may implicate spark timing, cylinder deactivation, engine fueling, etc. A steering controller is responsible for variable assist—reducing steering effort during low speed and parking maneuvers and progressively increasing steering effort as vehicle speed increases. A four wheel steering control is also responsible for controlling the turn angle of the rear wheels in the opposite direction from the front wheels at low vehicle speeds and in the same direction at higher vehicle speeds. A suspension controller likewise is responsible for tuning the ride characteristics of the vehicle in accordance with vehicle speed, predominantly for operator comfort through reduced damping at low vehicle speeds and for improved highway feel through increased damping at higher vehicle speeds.
The vehicle 11, sub-system actuators 13 and sub-system controllers 14 all provide various input signals 16 to the vehicle dynamics controller 10 for use in vehicle dynamics control routines. Vehicle inputs may include, for example, yaw rate, lateral acceleration and vehicle speed. Actuator inputs may include, for example, damper position and road wheel angle. Sub-system controller inputs may include, for example, individual brake corner actuation override, brake system blending terms, shock damping value override, AFS steering actuator override or extra steering angle. Vehicle 11, sub-system actuators 13 and sub-system controllers 14 input signals are preferably provided over a controller area network (CAN) bus but may take the form of discrete sensor signal inputs, serial communication lines, etc. Vehicle dynamics controller 10 in turn provides high priority control commands 18 for overriding, modifying or adapting the normal control of the sub-system controllers 14 in the interest of implementing vehicle dynamics enhancing control of the various sub-system actuators 13.
Vehicle dynamics controller 10 includes a variety of structured processing layers adapted to effect desirable objectives of promoting re-use of the software components, application development time and cost reductions, maintainability and multiple vehicle platform adaptation, among others. Significantly, the present invention promotes the reusability of not only the large scale control application software components but also of the vehicular interfaces, signal conditioning, internal bus structures and output processing.
Beginning at the left of the vehicle dynamics controller 10 in FIG. 1, signal processing layer 15 is shown interfacing with the various input signals 16 from vehicle 11, sub-system actuators 13 and sub-system controllers 14. Signal processing layer 15 is communication coupled to process inputs layer 17 via internal sensor bus 22. Process inputs layer 17 is also communication coupled to vehicle dynamics/driver intent layer 19 via internal vehicle dynamics bus 26, both of which are described herein below. Process inputs layer 17 is in turn communication coupled to vehicle dynamics/driver intent layer 19 via internal input bus 24. Vehicle dynamics/driver intent layer 19 is also communication coupled to signal processing layer 15 via internal sensor bus 22. Vehicle dynamics/driver intent layer 19 is in turn communication coupled to control system layer 21 via internal vehicle dynamics bus 26. Control system layer 21 is also communication coupled to signal processing layer 15 via internal sensor bus 22 and to process inputs layer 17 via internal input bus 24. Control system layer 21 is in turn communication coupled to process outputs layer 23 via internal control bus 28. Process outputs layer 23 is also communication coupled to process inputs layer 17 via internal input bus 24. Process outputs layer 23 is in turn communication coupled to command processing layer 25 via internal output bus 30. Finally, command processing layer 25 is in turn communication coupled to the various sub-system controllers 14 via CAN bus 20 to provide the previously described control commands 18.
From the preceding description of the vehicle dynamics controller 10, it can be appreciated that the described layers provides software partitioning, including at the vehicle interfacing, signal conditioning, internal bus structures and output processing to provide the aforementioned advantages. The layer independence allows for desired modularity and decomposition/recomposition of one or more layers or software components for development and maintenance without substantial effect upon any remaining layers or software components. The inter-layer bussing provides desired access to varying levels of input and output signals useful in development (e.g. for debugging and instrumentation) and sophisticated utilization of varying degrees of refined data both within and outside of the vehicle dynamics controller. The availability of gross-level decomposition of the vehicle dynamics controller of FIG. 10, and of structured inter-layer access via the internal bus thus architected, enables and promotes the objectives of software component re-use, application development time and cost reductions, maintainability and multiple vehicle platform adaptation.
Additional detail with respect to the various layers and inter-layer communication of vehicle dynamics controller 10 thus described in reference to FIG. 1 will be set forth with additional reference now to the remaining FIGS. 2-6.
Beginning with FIG. 2, signal processing layer 15 includes functional block 31 for reading CAN based signals, from sensors or derivations, including from vehicle 11, actuators 13 and sub-system controllers 14. Block 31 is communication coupled to CAN input conversion functional block 33 via internal receive CAN bus 32. Blocks 31 and 33 read the signals in, ensuring accuracy and robustness through appropriate level diagnostics, and convert the CAN signals to engineering units raw inputs for use in subsequent layers. Block 33 is communication coupled to internal sensor bus 22 for communicating the inputs with process inputs layer 17, vehicle dynamics/driver intent layer 19 and control system layer 21.
FIG. 3 illustrates process inputs layer 17 in additional detail including functional block 35 for filtering the inputs on internal sensor bus 22, thus centralizing input filtering to a common software component. From block 35, via internal filtered inputs bus 34, the filtered inputs are provided to functional block 37 for adjusting the inputs—for example, center of gravity adjustments to sensed motion for an offset motion sensor placement. From block 37, via internal adjusted inputs bus 36, the adjusted inputs are provided to functional block 39 for centering the inputs—for example, removal of sensor biases. Centering functionality is also performed for data provided over vehicle dynamics bus 26. From block 39, via internal centered inputs bus 38, the centered inputs are provided to functional block 41 for arbitration of multiple (i.e. redundant) related inputs providing, for example, validity determination, sanity checks for such things as input magnitude and ultimately determination of a single valid input from the multiplicity of related inputs. Arbitration functionality is also performed for data provided over vehicle dynamics bus 26. Functional block 43 is provided for derivation of additional inputs from inputs on internal sensor bus 22—for example first order derivative operations to provide vehicle yaw acceleration from vehicle yaw rate input. From functional blocks 43 and 41, such derived and arbitrated inputs, respectively, are communication coupled to internal inputs bus 24 for communicating the inputs with vehicle dynamics/driver intent layer 19, control system layer 21 and process outputs layer 23.
FIG. 4 illustrates vehicle dynamics/driver intent layer 19 in additional detail including a plurality of exemplary functional blocks for determining a variety of parameters required by the control system layer 21 of the vehicle dynamics controller 10 in determining the desirability of, and executory commands for, implementing active vehicle dynamics control. The functional blocks illustrated are, of course, non-exhaustive examples of various parameter determinations including: modeling functions; and calculated, detected, estimated, predicted or otherwise determined rates, limits, capabilities, conditions, quantities, errors and states. As best illustrated in FIG. 1, vehicle dynamics/driver intent layer 19 receives inputs and signals from internal inputs bus 24 and internal sensor bus 22, respectively, and provides parameter inputs to control system layer 21 via internal vehicle dynamics bus 26.
FIG. 5 illustra