購買設(shè)計請充值后下載,,資源目錄下的文件所見即所得,都可以點開預(yù)覽,,資料完整,充值下載就能得到。。。【注】:dwg后綴為CAD圖,doc,docx為WORD文檔,【有不明白之處,可咨詢QQ:1304139763】
Heat Treatment of Die and Mould Oriented Concurrent Design LI Xiong ZHANG Hong bing RUAN Xue yu LUO Zhong hua ZHANG Yan Abstract Many disadvantages exist in the traditional die design method which belongs to serial pattern It is well known that heat treatment is highly important to the dies A new idea of concurrent design for heat treatment process of die and mould was developed in order to overcome the existent shortcomings of heat treatment process Heat treatment CAD CAE was integrated with concurrent circumstance and the relevant model was built These investigations can remarkably improve efficiency reduce cost and ensure quality of R and D for products Key words die design heat treatment mould Traditional die and mould design mainly by experience or semi experience is isolated from manufacturing process Before the design is finalized the scheme of die and mould is usually modified time and again thus some disadvantages come into being such as long development period high cost and uncertain practical effect Due to strong desires for precision service life development period and cost modern die and mould should be designed and manufactured perfectly Therefore more and more advanced technologies and innovations have been applied for example concurrent engineering agile manufacturing virtual manufacturing collaborative design etc Heat treatment of die and mould is as important as design manufacture and assembly because it has a vital effect on manufacture assembly and service life Design and manufacture of die and mould have progressed rapidly but heat treatment lagged seriously behind them As die and mould industry develops heat treatment must ensure die and mould there are good state of manufacture assembly and wear resistant properties by request Impertinent heat treatment can influence die and mould manufacturing such as over hard and soft and assembly Traditionally the heat treatment process was made out according to the methods and properties brought forward by designer This could make the designers of die and mould and heat treatment diverge from each other for the designers of die and mould could not fully realize heat treatment process and materials properties and contrarily the designers rarely understood the service environment and designing thought These divergences will impact the progress of die and mould to a great extent Accordingly if the process design of heat treatment is considered in the early designing stage the aims of shortening development period reducing cost and stabilizing quality will be achieved and the sublimation of development pattern from serial to concurrent will be realized Concurrent engineering takes computer integration system as a carrier at the very start subsequent each stage and factors have been considered such as manufacturing heat treating properties and so forth in order to avoid the error The concurrent pattern has dismissed the defect of serial pattern which bring about a revolution against serial pattern In the present work the heat treatment was integrated into the concurrent circumstance of the die and mould development and the systemic and profound research was performed 1 Heat Treatment Under Concurrent Circumstance The concurrent pattern differs ultimately from the serial pattern see Fig 1 With regard to serial pattern the designers mostly consider the structure and function of die and mould yet hardly consider the consequent process so that the former mistakes are easily spread backwards Meanwhile the design department rarely communicates with the assembling cost accounting and sales departments These problems certainly will influence the development progress of die and mould and the market foreground Whereas in the concurrent pattern the relations among departments are close the related departments all take part in the development progress of die and mould and have close intercommunion with purchasers This is propitious to elimination of the conflicts between departments increase the efficiency and reduce the cost Heat treatment process in the concurrent circumstance is made out not after blueprint and workpiece taken but during die and mould designing In this way it is favorable to optimizing the heat treatment process and making full use of the potential of the materials 2 Integration of Heat Treatment CAD CAE for Die and Mould It can be seen from Fig 2 that the process design and simulation of heat treatment are the core of integration frame After information input via product design module and heat treatment process generated via heat treatment CAD and heat treatment CAE module will automatically divide the mesh for parts drawing simulation temperature field microstructure analysis after heat treatment and the defect of possible emerging such as overheat over burning and then the heat treatment process is judged if the optimization is made according to the result reappeared by stereoscopic vision technology Moreover tool and clamping apparatus CAD and CAM are integrated into this system The concurrent engineering based integration frame can share information with other branch That makes for optimizing the heat treatment process and ensuring the process sound 2 1 3 D model and stereoscopic vision technology for heat treatment The problems about materials structure and size for die and mould can be discovered as soon as possible by 3 D model for heat treatment based on the shape of die and mould Modeling heating condition and phase transformation condition for die and mould during heat treatment are workable because it has been broken through for the calculation of phase transformation thermodynamics phase transformation kinetics phase stress thermal stress heat transfer hydrokinetics etc For example 3 D heat conducting algorithm models for local heating complicated impression and asymmetric die and mould and M ARC software models for microstructure transformation was used Computer can present the informations of temperature microstructure and stress at arbitrary time and display the entire transformation procedure in the form of 3 D by coupling temperature field microstructure field and stress field If the property can be coupled various partial properties can be predicted by computer 2 2 Heat treatment process design Due to the special requests for strength hardness surface roughness and distortion during heat treatment for die and mould the parameters including quenching medium type quenching temperature and tempering temperature and time must be properly selected and whether using surface quenching or chemical heat treatment the parameters must be rightly determined It is difficult to determine the parameters by computer fully Since computer technology develops quickly in recent decades the difficulty with large scale calculation has been overcome By simulating and weighing the property the cost and the required period after heat treatment it is not difficult to optimize the heat treatment process 2 3 Data base for heat treatment A heat treatment database is described in Fig 3 The database is the foundation of making out heat treatment process Generally heat treatment database is divided into materials database and process database It is an inexorable trend to predict the property by materials and process Although it is difficult to establish a property database it is necessary to establish the database by a series of tests The materials database includes steel grades chemical compositions properties and home and abroad grades parallel tables The process database includes heat treatment criterions classes heat preservation time and cooling velocity Based on the database heat treatment process can be created by inferring from rules 2 4 Tool and equipment for heat treatment After heat treatment process is determined tool and equipment CAD CAE system transfers the information about design and manufacture to the numerical control device Through rapid tooling prototype the reliability of tool and the clamping apparatus can be judged The whole procedure is transferred by network in which there is no man made interference 3 Key Technique 3 1 Coupling of temperature microstructure stress and property Heat treatment procedure is a procedure of temperature microstructure stress interaction The three factors can all influence the property see Fig 4 During heating and cooling hot stress and transformation will come into being when microstructure changes Transformation temperature microstructure and temperature microstructure and stress property interact on each other Research on the interaction of the four factors has been greatly developed but the universal mathematic model has not been built Many models fit the test nicely but they cannot be put into practice Difficulties with most of models are solved in analytic solution and numerical method is employed so that the inaccuracy of calculation exists Even so comparing experience method with qualitative analysis heat treatment simulation by computer makes great progress 3 2 Establishment and integration of models The development procedure for die and mould involves design manufacture heat treatment assembly maintenance and so on They should have own database and mode1 They are in series with each other by the entity relation model Through establishing and employing dynamic inference mechanism the aim of optimizing design can be achieved The relation between product model and other models was built The product model will change in case the cell model changes In fact it belongs to the relation of data with die and mould After heat treatment model is integrated into the system it is no more an isolated unit but a member which is close to other models in the system After searching calculating and reasoning from the heat treatment database procedure for heat treatment which is restricted by geometric model manufacture model for die and mould and by cost and property is obtained If the restriction is disobeyed the system will send out the interpretative warning All design cells are connected by communication network 3 3 Management and harmony among members The complexity of die and mould requires closely cooperating among item groups Because each member is short of global consideration for die and mould development they need to be managed and harmonized Firstly each item group should define its own control condition and resource requested and learn of the request of up and down working procedure in order to avoid conflict Secondly development plan should be made out and monitor mechanism should be established The obstruction can be duly excluded in case the development is hindered Agile management and harmony redound to communicating information increasing efficiency and reducing redundancy Meanwhile it is beneficial for exciting creativity clearing conflict and making the best of resource 4 Conclusions 1 Heat treatment CAD CAE has been integrated into concurrent design for die and mould and heat treatment is graphed which can increase efficiency easily discover problems and clear conflicts 2 Die and mould development is performed on the same platform When the heat treatment process is made out designers can obtain correlative information and transfer self information to other design departments on the platform 3 Making out correct development schedule and adjusting it in time can enormously shorten the development period and reduce cost References 1 ZHOU Xiong hui PENG Ying hong The Theory and Technique of Modern Die and Mould Design and Manufacture M Shanghai Shanghai Jiaotong University Press 2000 in Chinese 2 Kang M Park Computer Integrated Mold Manufacturing J Int J Computer Integrated Manufacturing 1995 5 229 239 3 Yau H T Meno C H Concurrent Process Planning for Finishing Milling and Dimensional Inspection of Sculptured Surface in Die and Mould Manufacturing J Int J Product Research 1993 31 11 2709 2725 4 LI Xiang ZHOU Xiong hui RUAN Xue yu Application of Injection Mold Collaborative Manufacturing System J JournaI of Shanghai Jiaotong University 2000 35 4 1391 1394 5 Kuzman K Nardin B Kovae M et a1 The Integration of Rapid Prototyping and CAE in Mould Manufacturing J J Materials Processing Technology 2001 111 279 285 6 LI Xiong ZHANG Hong bing RUAN Xue yu et a1 Heat Treatment Process Design Oriented Based on Concurrent Engineering J Journal of Iron and Steel Research 2002 14 4 26 29 文獻(xiàn)出處 LI Xiong ZHANG Hong bing RUAN Xue yu LUO Zhong hua ZHANG Yan Heat Treatment of Die and Mould Oriented Concurrent Design J Journal of Iron and Steel Research 2006 13 1 40 43 74 江門職業(yè)技術(shù)學(xué)院 學(xué)生畢業(yè)論文 設(shè)計 論 文 題 目 角墊片模具設(shè)計 作 者 指 導(dǎo) 教 師 所 學(xué) 專 業(yè) 班 別 學(xué) 號 完 成 日 期 第 2 頁 共 20 頁 目 錄 摘要 3 前言 3 第一章 工件的工藝性分析 4 1 1 沖壓件的工藝性分析 4 1 2 確定工藝方案 5 第二章 主要工藝參數(shù)計算 7 2 1 畫排樣圖 7 2 2 材料利用率計算 7 2 3 計算沖壓力 8 2 3 1 沖孔力的計算 8 2 3 2 落料力的計算 8 2 3 3 卸料力的計算 9 2 3 4 推件力的計算 9 2 3 5 總沖裁力的計算 9 2 4 計算壓力中心 9 2 5 選擇沖壓設(shè)備 10 第三章 主要工作部分尺寸計算 11 3 1 落料模尺寸計算 11 3 2 沖孔模尺寸計算 11 第四章 模具主要零件及結(jié)構(gòu)設(shè)計 13 4 1 落料凹模的結(jié)構(gòu)設(shè)計 13 4 2 沖孔凸模的結(jié)構(gòu)設(shè)計及固定板 卸料板的選取 13 4 3 落料凸模與沖孔凹模的結(jié)構(gòu)設(shè)計 13 4 4 模架的選擇 15 4 5 推件裝置的選擇 15 4 6 條料送進(jìn)和定位方式的選擇 15 第五章 校核壓力機(jī)安裝尺寸 16 第六章 總結(jié) 17 第 3 頁 共 20 頁 角墊片模具設(shè)計 摘 要 本次設(shè)計了一套落料 沖孔的模具 經(jīng)過查閱資料 首先要對零件進(jìn)行工藝分析 經(jīng)過工藝分析和對比 采用落料 沖孔工序 通過沖裁力 頂件力 卸料力等計算 確定壓力機(jī)的型號 在分析對沖壓件加工的模具適用類型選擇所需設(shè)計的模具 得出 將設(shè)計的模具類型后將模具的各工作零部位設(shè)計過程表達(dá)出來 在文檔中第一部分 主要敘述了沖壓模具的發(fā)展?fàn)顩r 說明了沖壓模具的重要性 與本次設(shè)計的意義 接著是對沖壓件的工藝分析 完成了工藝方案的確定 第二部分 對零件排樣圖的設(shè)計 完成了材料利用率的計算 再進(jìn)行沖裁工藝力的計算和沖裁模 工作部分的設(shè)計計算 對選擇沖壓設(shè)備提供依據(jù) 最后對主要零部件的設(shè)計和標(biāo)準(zhǔn)件 的選擇 為本次設(shè)計模具的繪制和模具的成形提供依據(jù) 以及為裝配圖各尺寸提供依 據(jù) 通過前面的設(shè)計方案畫出模具各零件圖的裝配圖 本次設(shè)計闡述了沖壓倒裝復(fù)合膜的結(jié)構(gòu)設(shè)計及工作過程 本模具性能可靠 運行 平穩(wěn) 提高了產(chǎn)品質(zhì)量和生產(chǎn)效率 降低勞動強(qiáng)度個生產(chǎn)成本 關(guān)鍵詞 沖壓模 復(fù)合膜 連接片 沖裁間隙 第 4 頁 共 20 頁 前 言 零沖壓工藝規(guī)程是模具設(shè)計的依據(jù) 而良好的模具結(jié)構(gòu)設(shè)計又是實現(xiàn)工藝過程的 可靠保證 若沖壓工藝有所改動 往往會造成模具的返工 甚至報廢 沖裁同樣的零 件 通??梢圆捎脦追N不同方法 工藝過程設(shè)計的中心就是依據(jù)技術(shù)上先進(jìn) 經(jīng)濟(jì)上 合理 生產(chǎn)上高效 使用上安全可靠的原則 是零件的生產(chǎn)在保證符合零件的各項技 術(shù)要求的前提下達(dá)到最佳的技術(shù)效果和經(jīng)濟(jì)效益 沖壓模具在實際工業(yè)生產(chǎn)中應(yīng)用廣泛 在傳統(tǒng)的工業(yè)生產(chǎn)中 工人生產(chǎn)的勞動強(qiáng) 度大 勞動量大 嚴(yán)重影響生產(chǎn)效率的提高 隨著當(dāng)今科技的發(fā)展 工業(yè)生產(chǎn)中模具 的使用已經(jīng)越來越引起人們的重視 而被大量應(yīng)用到工業(yè)生產(chǎn)中來 沖壓模具的自動 送料技術(shù)也投入到實際的生產(chǎn)中 沖壓模具可以大大的提高勞動生產(chǎn)效率 減輕工人 負(fù)擔(dān) 具有重要的技術(shù)進(jìn)步意義和經(jīng)濟(jì)價值 沖壓靠壓力機(jī)和模具對板材 帶材 管材和型材等施加外力 使之產(chǎn)生塑性變形 或 分離 從而獲得所需形狀和尺寸的工件 沖壓件 的成形加工方法 沖壓和鍛造同屬塑 性加工合稱鍛壓 沖壓的坯料主要是熱軋和冷軋的鋼板和鋼帶 全世界的鋼材中 有 60 70 是板材 其中大部分經(jīng)過沖壓制成成品 汽車的車身 底盤 油箱 散熱 器片 鍋爐的汽包 容器的殼體 電機(jī) 電器的鐵芯硅鋼片等都是沖壓加工的 儀器 儀表 家用電器 自行車 辦公機(jī)械 生活器皿等產(chǎn)品中 也有大量沖壓件 沖壓件與鑄件 鍛件相比 具有薄 勻 輕 強(qiáng)的特點 沖壓可制出其他方法難 于制造的帶有加強(qiáng)筋 肋 起伏或翻邊的工件 以提高其剛性 由于采用精密模具 工件精度可達(dá)微米級 且精度高 規(guī)格一致 可以沖壓出孔窩 凸臺等 冷沖壓件一 般不再經(jīng)切削加工 或僅需要少量的切削加 工 熱沖壓件精度和表面狀態(tài)低于冷沖壓 件 但仍優(yōu)于鑄件 鍛件 切削加工量少 第 5 頁 共 20 頁 第一章 工件的工藝性分析 1 1 沖壓件的工藝性分析 制件如圖 1 1 所示 材料為 Q235 號鋼 厚度 2mm 制件尺寸精度為 IT9 級 為大 批量生產(chǎn) 圖 1 1 角墊片 根據(jù)工件的材料 厚度 形狀尺寸 在進(jìn)行沖壓工藝設(shè)計過程時 從以下幾點進(jìn) 行分析 1 孔徑是否太小 太小會導(dǎo)致凸模強(qiáng)度不夠 2 該工件有兩道工序完成 是否應(yīng)分兩個工位完成 還是一個工位完成 哪種 方法能更好的保證達(dá)到加工的要去 值得考慮 3 這里是大批量生產(chǎn) 應(yīng)重視模具材料和結(jié)構(gòu)的選擇 保證有一定的模具壽命 第 6 頁 共 20 頁 4 該模具的落料凹模形狀較復(fù)雜 應(yīng)注意它的制造工藝和精度 1 2 確定工藝方案 根據(jù)工件的工藝分析 其基本工序有沖孔 落料兩種 按其先后順序組合 可得 如下三種方案 1 落料 沖孔 單工序模 2 沖孔 落料 連續(xù)模 3 沖孔 落料 復(fù)合模 方案 1 屬于單工序模沖壓 由于工件生產(chǎn)批量較大 尺寸較小 這種方案生產(chǎn)率 低且操作不安全 不適用 方案 2 屬于連續(xù)模沖壓 此方案雖容易實現(xiàn)自動化生產(chǎn) 但價格與工位成比例上 升 需分別設(shè)計配套模具 在本題中不是最適合的沖裁方案 方案 3 屬于復(fù)合模沖壓 此方案與前兩種相比更適合 兩道工序能在同一工位里 完成 操作簡單 復(fù)合生產(chǎn)要求 故此方案最為合適 第 7 頁 共 20 頁 第二章 主要工藝參數(shù)計算 2 1 畫排樣圖 圖 2 1 排樣圖 因為工件的形狀比較復(fù)雜 且加工起來比較困難 為了能加工出最好的產(chǎn)品 在 此采取單排的排樣方案如圖 2 1 所示 由文獻(xiàn) 1 表 3 3 搭邊尺寸 a 的取值 得 a 3mm a1 2mm 從排樣圖中可知 條料寬度 B 222 37mm 送料步距為 H 76 36mm 這樣排樣將只 有一個工位 將落料和沖孔兩道工序復(fù)合在一起 先沖孔 后落料 2 2 材料利用率計算 由文獻(xiàn) 2 材料利用率的計算公式為 nA bh 100 式中 材料的利用率 第 8 頁 共 20 頁 n 一個步距內(nèi)的制件數(shù) A 制件的面積 A 12916mm b 板料寬度 mm h 排樣的步距 mm 12916 222 73 76 36 100 76 07 2 3 計算沖壓力 2 3 1 沖孔力的計算 F 沖 nlt b 式中 F 沖 沖孔力 KN n 一個步距內(nèi)的制件數(shù) l 制件內(nèi)輪廓周長 mm t 板料厚度 mm b 材料的抗拉強(qiáng)度 460MPa l 2 14 87 92mm F 沖 87 92 2 460 80 89KN 2 3 2 落料力的計算 F 落 nlt b 式中 F 落 落料力 KN n 一個步距內(nèi)的制件數(shù) l 制件外輪廓周長 mm t 板料厚度 mm b 材料的抗拉強(qiáng)度 460MPa l 40 1 41 2 42 2 91 2 133 588 4mm F 落 588 4 2 460 541 33KN 2 3 3 卸料力的計算 F 卸 KP 第 9 頁 共 20 頁 式中 F 卸 卸料力 KN K 卸料力系數(shù) 由文獻(xiàn) 2 表 3 13 得 K 取 0 05 P 沖裁力 KN F 卸 0 05 541 33 80 89 31 46KN 2 3 4 推件力的計算 F 推 KP 式中 F 推 推件力 KN K 推件力系數(shù) 由文獻(xiàn) 2 表 3 13 得 K 取 0 05 P 落料力 KN F 卸 0 05 541 33 27 07KN 2 3 5 總沖裁力的計算 F 總 F 沖 F 落 F 卸 F 推 80 89 541 33 31 46 27 07 680 75KN 2 4 計算壓力中心 圖 2 2 壓力中心分析圖 因為該工件為軸對稱零件 所以其重心在對稱中心線上 計算壓力中心時僅考慮 如圖 2 2 所示 X 方向的值 lx l1 x1 l2 x2 l3 x3 l4 x4 第 10 頁 共 20 頁 133 47 02 42 108 89 14 14 123 74 14 101 12 17024 48 l l1 l2 l3 l4 133 42 14 14 14 233 08 Yc lx l 17024 48 233 08 73 04mm 2 5 選擇沖壓設(shè)備 依據(jù)文獻(xiàn) 3 表 7 4 開式雙柱可傾壓力機(jī) 部分 參數(shù) 初選壓力機(jī)型號規(guī)格為 J23 100 它具有工作臺三面敞開 操作方便 成本低廉的優(yōu)點 該壓力機(jī)與模具設(shè)計的有 關(guān)參數(shù)為 公稱壓力 1000KN 滑塊行程 140mm 最大閉合高度 400mm 封閉高度調(diào)節(jié)量 110mm 工作臺尺寸 900mm 600mm 工作臺板厚度 50mm 模柄孔尺寸 60mm 75mm 第 11 頁 共 20 頁 第三章 主要工作部分尺寸計算 根據(jù)文獻(xiàn) 2 表 3 6 得 間隙值 Zmin 0 28mm Zmax 0 40mm 3 1 落料模尺寸計算 由文獻(xiàn) 1 的公式 4 2 和表 4 3 及文獻(xiàn) 3 的表 1 20 可得到落料凸 凹模的基本尺 寸計算公式 凸凹模尺寸系數(shù) x 和標(biāo)準(zhǔn)公差數(shù)值 工件尺寸如圖 4 1 所示 因模具的制造精度應(yīng)比工件高 3 4 級 所以設(shè)模具的制造精度為 IT6 級 則有 工件尺寸 凸模尺寸 0minD凸 凸 Zx凹模尺寸 凹 凹 0D x01 3 025 61325 913 062 416 84 016 84 81 9 02 392 09052 01 57 13 043 80 74 校核 凸 凹 Zmax Zmin 0 40 0 28 0 12mm 經(jīng)校核表中凸 凹模的尺寸偏差均符合要求 即所選的 凸 凹合適 3 2 沖孔模尺寸計算 對于 孔沖裁凸模 凹模的制造公差可由文獻(xiàn) 3 的表 1 20 查得 凸 43 01 0 011mm 凹 0 011mm 則 凹 凹 0mindZx01 324 凸 凸 1 校核 凸 凹 Zmax Zmin 0 40 0 28 0 12mm 證明所選的 凸 凹合適 由文獻(xiàn) 3 的表 2 13 得 對于孔心距 L 140 1 0 06 L 凹 140 1 0 5 0 06 0 06 8 140 04 0 0075 mm 第 12 頁 共 20 頁 第四章 模具主要零件及結(jié)構(gòu)設(shè)計 模具的零件及結(jié)構(gòu) 主要由上模 下模座 落料凹模 落料凸模 沖孔凸模 卸 第 13 頁 共 20 頁 料板 固定板和墊板等零件組成 4 1 落料凹模的結(jié)構(gòu)設(shè)計 雖然工件形狀較復(fù)雜 但為了方便設(shè)計 凹模采用整體式凹模 具體結(jié)構(gòu)如凹模 零件圖所示 由文獻(xiàn) 2 的表 3 21 與表 3 22 可知落料凹模壁厚 C 為 45 58mm 取 C 45mm 凹模的長度與寬度 L B 315 250mm 由文獻(xiàn) 2 的凹模經(jīng)驗公式得凹模最小厚度為 H 凹 37 23mm落FK3 5416 取落料凹模的厚度為 40mm 4 2 沖孔凸模的結(jié)構(gòu)設(shè)計及固定板 卸料板的選取 沖孔凸模的結(jié)構(gòu)形式為直通式 具體結(jié)構(gòu)如沖孔凸模的零件圖所示 固定板與凸 模的采用基軸制過盈配合 卸料板與凸模之間的單邊間隙為 0 4mm 凸模的長度6 7hN 計算公式為 L h1 h2 h3 h 式中 L 凸模長度 mm h1 固定板厚度 為 0 7 H 凹 28mm h2 卸料板厚度 18mm h3 導(dǎo)料板厚度或料厚 mm h 附加長度 一般取 15 20mm 這里取 20mm 則 L 28 18 2 20 68mm 4 3 落料凸模與沖孔凹模的結(jié)構(gòu)設(shè)計 落料凸模與沖孔凹模為一整體 具體結(jié)構(gòu)如零件圖所示 第 14 頁 共 20 頁 圖 4 1 落料凸模 第 15 頁 共 20 頁 圖 4 2 落料凹模 4 4 模架的選擇 凹模尺寸確定后可參照文獻(xiàn) 4 的表 22 3 46 選取滑動導(dǎo)向后導(dǎo)柱模架 400mm 355mm 195mm 240mm GB 7181 1 1995 上模座 315mm 250mm 40mm 材質(zhì)為 HT200 下模座 315mm 250mm 50mm 材質(zhì)為 HT200 導(dǎo)柱 32h5 190mm 材質(zhì)為 Mn 鋼 導(dǎo)套 32H5 100mm 38mm 材質(zhì)為 Mn 鋼 4 5 推件裝置的選擇 推件裝置選取帶有彈性元件和推桿的推件裝置 推力均勻 安全可靠 如裝配圖 所示 4 6 條料送進(jìn)和定位方式的選擇 選用擋料銷作為定位裝置 保證條料送進(jìn)的步距 擋料銷為活動擋料裝置 選用 導(dǎo)料銷作為 Y 方向的定位 保證條料送進(jìn)平直 第 16 頁 共 20 頁 第五章 校核壓力機(jī)安裝尺寸 由前文所知 所選的模座外形尺寸為 400mm 355mm 閉合高度 195mm 240mm 由 所選的壓力機(jī)工作臺尺寸 900mm 600mm 最大閉合高度 400mm 封閉高度調(diào)節(jié)量為 110mm 由文獻(xiàn) 2 表 2 5 可得所加墊板厚度為 100mm 則符合安裝要求 所選模柄孔尺 寸與本副模具相符 第 17 頁 共 20 頁 第六章 總結(jié) 通過對角墊片模具的設(shè)計 對常用成型模具過程中對模具的工藝要求有了更深一 層 的理解 掌握了成型模具的結(jié)構(gòu)特點及設(shè)計計算方法 對獨立設(shè)計模具具有了一次新 的鍛煉 在模具制造的加工工藝 來編寫加工工藝卡片 在設(shè)計過程中充分利用了各種可以利用的方式 同時在反復(fù)的思考中不斷深化對 各種理論知識的理解 在設(shè)計的后一階段充分利用 CAD UG 軟件就是一例 新的工具的 利用 大在提高了工作效率 以計算機(jī)為手段 專用模具分析設(shè)計軟件為工具設(shè)計模具 軟件可直接調(diào)用數(shù)據(jù) 庫中模架尺寸 金屬材料數(shù)據(jù)庫及加工參數(shù) 通過幾何造型及圖形變換可得到模板及 模腔與型芯形狀尺寸迅速完成模具設(shè)計 模具 CAD UG 技術(shù)是模具傳統(tǒng)設(shè)計方式的革命 大大提高了設(shè)計效率 尤其是系列 化或類似注射模具設(shè)計效率更為提高 總之 通過畢業(yè)設(shè)計的又一次鍛煉完全清楚 充分利用 CAD UG 技術(shù)進(jìn)行設(shè)計 在 模具符合使要求的前提下盡量降低成本 同時在實際中不斷的積累經(jīng)驗 以設(shè)計出價 廉物美的模具 這次設(shè)計能順利完成 還得感謝張老師的精心指導(dǎo) 但錯誤之處在所難免 望批評指 正 非常感謝 第 18 頁 共 20 頁 致 謝 歲月如梭 三年的大學(xué)生涯眨眼而過 為能夠很好的檢驗這三年來的學(xué)習(xí)效果 綜合檢查測理論在實際應(yīng)用中的能力 而進(jìn)行了這次的設(shè)計 其實除了平時的考試 實驗測試外 更重要的是理論聯(lián)系實際 把知識放到工作上 即此次設(shè)計的課題為角 墊片模具 這次畢業(yè)設(shè)計課題來源于生活 應(yīng)用廣泛 但成型難度大 模具結(jié)構(gòu)較為復(fù)雜 對模具工作人員是一個很好的考驗 它能加強(qiáng)對模具成型原理的理解 同時鍛煉對模 具成型的設(shè)計和制造能力 這次設(shè)計以角墊片模具為主線 綜合了成型工藝分析 模具結(jié)構(gòu)設(shè)計 最后到模 具零件的加工方法 模具總的裝配等一系列模具生產(chǎn)的所有過程 能很好得達(dá)到學(xué)以 致用的效果 在設(shè)計該模具的同時總結(jié)了以往模具設(shè)計的一般方法 步驟 模具設(shè)計 中常用的公式 數(shù)據(jù) 模具結(jié)構(gòu)及零部件 把以前學(xué)過的基礎(chǔ)課程融匯刀綜合應(yīng)用本 次設(shè)計當(dāng)中來 在設(shè)計中除使用傳統(tǒng)方法外 同時引用了 CAD UG 等技術(shù) 使用了 Office 等軟件 力求達(dá)到減小勞動強(qiáng)度 提高工作效率的目的 這次設(shè)計中非常感謝同學(xué)及張老師的精心教誨 第 19 頁 共 20 頁 參考文獻(xiàn) 1 王樹勛 廖紅宜 冷沖壓工藝與模具設(shè)計 電子工業(yè)出版社 2009 6 2 楊海鵬 模具設(shè)計與制造實訓(xùn)教程 清華大學(xué)出版社 2011 5 第 20 頁 共 20 頁