購買設計請充值后下載,,資源目錄下的文件所見即所得,都可以點開預覽,,資料完整,充值下載就能得到。。?!咀ⅰ浚篸wg后綴為CAD圖,doc,docx為WORD文檔,【有不明白之處,可咨詢QQ:1304139763】
畢 業(yè) 設 計 論 文 設計 論文 題目 擺式波浪發(fā)電裝置設計 學生姓名 學 號 專 業(yè) 所在學院 指導教師 職 稱 年 月 日 金陵科技學院學士學位論文 目錄 II 目 錄 摘 要 III Abstract IV 第 1 章 緒論 1 1 1 課題背景及研究意義 1 1 2 國內外研究現(xiàn)狀 1 1 2 1 漂浮式波浪能裝置的典型形式 2 1 2 2 固定式波浪能裝置的典型形式 5 1 3 本文主要研究內容 7 1 4 設計和研究的內容和重點 7 第 2 章 擺式波浪能發(fā)電裝置方案設計 8 2 1 概述 8 2 2 方案設計 8 2 3 整體方案論證 11 第 3 章 擺式波浪能發(fā)電裝置的結構設計 12 3 1 漂浮系統(tǒng)的運動計算 12 3 2 主體結構的設計 12 3 3 齒輪傳動設計 12 3 3 1 第一級齒輪傳動設計 12 3 3 2 第二級齒輪傳動設計 14 3 4 軸的校核 16 3 5 鍵的校核 21 3 6 軸承的校核 22 總 結 24 參考文獻 25 致 謝 26 金陵科技學院學士學位論文 摘要 III 擺式波浪發(fā)電裝置設計 摘 要 波浪能轉換技術作為一種具有廣闊應用前景的綠色可再生新能源技術 得到 世界諸國越來越多的關注與研究 轉換技術的研究主要集中在不同形式轉換裝置 的研究與應用上 本文簡要介紹了波浪能轉換技術的研究背景及現(xiàn)階段國內外研究現(xiàn)狀 深入 分析了各種不同形式的波浪能轉換裝置的原理及特性 在此基礎上 提出了一套 新型的波浪能轉換裝置的設計方案 通過參考實驗室試驗研究取得的成果 理論 分析與計算以及計算機輔助建模與仿真分析等研究方式 具體開展并完成了以下 幾個方面的研究工作 提出了一套新型波浪能轉換裝置的總體設計方案 確定了裝置 機械 液壓系統(tǒng) 的物理模型及 波浪能 機械能 液壓能 機械能 電能 的 4 級能量轉換路徑 并綜合考慮實際工程應用時的制造 運輸 安裝以及維護 等因素 對方案進行了工程應用可行性改造 形成了 子模塊 總裝置 的方案 形式 通過研究提出了各種波浪能裝置國外海洋能的特點 這改變機械結構和工作原理 轉換效率變化大部分理論或初步設計 通過利用海浪能量的技術是比較新的 對相關設 備進行了優(yōu)化設計還是比較小的 類似的研究一直領先意義的優(yōu)化器件的設計 關鍵詞 擺式發(fā)電裝置 齒輪傳動 波浪能 金陵科技學院學士學位論文 Abstract IV Tilting Wave Power Plant Design Abstract Green wave energy converter technology as having broad application prospects of new renewable energy technologies to give more and more attention and research world countries Conversion technology research focused on different forms of conversion means research and application on This paper briefly introduces the background research status of wave energy conversion technology and domestic and international stage in depth The principle and characteristics of different forms of wave energy conversion device On this basis a set of The new design of wave energy conversion device By the results of the reference made in laboratory theory Analysis and Calculation of research methods and computer aided modeling and simulation analysis carried out and completed the following specific Several research work He proposed a set of new wave energy conversion device of the overall design Determining the means Machinery Hydraulic systems physical models and wave energy mechanical energy hydraulic energy mechanical energy energy 4 level energy conversion path And considering the practical application when manufacturing transportation installation and maintenance And other factors the program has been the transformation of engineering feasibility forming scheme sub module of the total device form By studying various proposed ocean wave energy characteristics of foreign energy devices which change the mechanical structure and working principle most of the theoretical conversion efficiency changes or preliminary design Through the use of wave energy technology is relatively new related equipment optimized design is still relatively small similar research has been leading the significance of optimizing the device s design Keywords Tilting power generation device gear wave energy 金陵科技學院學士學位論文 第 1 章 緒 論 1 第 1 章 緒論 1 1 課題背景及研究意義 20 世紀 70 年代出現(xiàn)的世界石油危機 使得各國政府和人民清醒地認識到能源安全 在國民經濟和社會發(fā)展中的重要地位 為了解決能源問題 尋找替代的可再生能源日漸 成為全球共識 在此背景之下 世界許多國家開始著手對海洋能的研究 地球事實上是 一個水球 海洋面積占地球總表面積的比例超過 70 海洋中儲存著巨大的能量 海水 在運動中產生多種可再生的能量 主要包括波浪能 潮汐能 潮流能 海流能 溫差能 以及鹽差能等 這些能量統(tǒng)一稱為海洋能 其中又以波浪能為最主要形式 國際能源組 織 1994 年公布的報告指出 波浪能如果被充分開發(fā) 最終可提供當前全球電力需求的 10 左右 估計為 20 30 億千瓦 我國海洋能資源十分豐富 可開發(fā)利用量估計達 10 億千瓦 其中近海波浪能理論平均功率為 1300 萬千瓦 波浪能作為一種儲量巨大的清潔可再生能源 早在 18 世紀末 人們就開始著手對 其進行研究 但當時的波浪能研究主要集中在波浪能轉換裝置的發(fā)明上 一直到世界石 油危機之后 人們才開始認真地研究波浪能的實際利用技術 此后陸續(xù)有多個國家開展 了波浪能的利用研究 20 世紀 80 年代以來 世界各國相繼建成了 20 個左右的波浪能 轉換裝置或電站 對于波浪能轉換裝置 目前各國研制的多半是用于航標燈 浮標等電 源使用的小型波浪能轉換裝置 據(jù)不完全統(tǒng)計 全世界約有數(shù)千座該類波浪能轉換裝置 在運轉 僅日本就有 1500 多座在使用中 我國也有 500 臺左右該類裝置已投入到實際 運行中 目前 波浪能轉換裝置理論基本成熟 研究課題主要集中在幾種較佳的方案上 如漂浮式波浪能轉換裝置 沿岸固定式波浪能轉換裝置 近岸固定式波浪能轉換裝置 聚波儲能式波浪能轉換裝置 擺式波浪能轉換裝置等 鑒于波浪能利用在成本及其技術方面仍難以和常規(guī)能源相競爭 波浪能轉換裝置在 當前還不能得到廣泛推廣 但在某些不便利用常規(guī)能源的地區(qū) 如海島和海上設施能源 供應 波浪能就顯示出了其特有的優(yōu)越性和生命力 如今能源缺乏已經嚴重制約了我國 諸多島嶼的經濟發(fā)展和國防建設 因此 波浪能的廣泛應用對這些地區(qū)的資源開發(fā)有著 重要的現(xiàn)實意義 隨著海洋開發(fā)向縱深發(fā)展 波浪能可為將來的海上工程作業(yè)提供便利 的電能 解決離岸用電問題 目前 開發(fā)波浪能的首要任務是依靠海岸工程領域的技術 進步以大幅度提高波浪能的利用效率和盡可能的降低工程造價 隨著波浪能利用中某些 關鍵技術的逐步解決 波浪能必將在能源結構中占據(jù)重要位置 1 2 國內外研究現(xiàn)狀 全世界對波浪能利用研究以英國投入最大 英國對利用波浪能研究的重視使其在 20 世紀 80 年代初就已成為世界波浪能研究中心 英國于 1990 年及 1994 年分別在蘇格 蘭伊斯萊島和奧斯普雷建成 75 千瓦振蕩水柱式波浪能發(fā)電站和 300 千瓦固定式岸基波 金陵科技學院學士學位論文 第 1 章 緒 論 2 浪能發(fā)電站 除此之外 英國還致力于原型波浪能發(fā)電機組以及導航浮標波浪能透平發(fā) 電機組等的研究 它的波浪能利用技術居世界領先地位 并實現(xiàn)了商業(yè)化 英國波浪能 發(fā)電的開發(fā)目標是容量為 2 萬千瓦的發(fā)電裝置 并使它與陸地電網系統(tǒng)并網 現(xiàn)已經完 成這個研究項目 挪威也于 1984 年及 1985 年在卑爾根島上相繼建成了振蕩水柱式和聚波能流式兩 座不同形式的岸式波浪能電站 其裝機容量分別為 500 千瓦和 350 千瓦 均取得了良 好的經濟效益 目前運行狀況良好 在商業(yè)化及產業(yè)化發(fā)展的方向 挪威的岸式波浪能 發(fā)電技術已向商品化發(fā)展并打入國際市場 印尼 美國 葡萄牙等國家均與挪威簽訂了 相關技術引進協(xié)議 日本的波浪能利用研究與開發(fā)也十分活躍 其國內的數(shù)十家研究與開發(fā)機構既明確 分工又互相協(xié)作 取得了一系列非常重要的研究成果 日本重視技術向生產應用的轉化 使其在波浪能轉換技術實用化方面走在了世界前列 從 20 世紀 80 年代中期至今 日 本已建成 4 座岸基固定式和防波堤式波浪能發(fā)電站 單機容量為 40 125 千瓦 目前 運行狀況良好 國內有組織的對波浪能轉換的研究系自 20 世紀 70 年代開始 1975 年 上海進行 了我國波浪能轉換裝置的海上首次試驗 但未取得科學上和實用上的收獲 如今 波浪 能轉換研究已由上海擴展到大連 青島 廣州 南京等地 目前 國內許多的研究機構 和大學都在進行相關的研究 20 世紀末期 我國開始研制 30 千瓦和 100 千瓦波浪能 轉換裝置 目前已經成功建成發(fā)電站并投入運行 波浪能轉換裝置的形式依照裝置的錨系方式的不同可以分為漂浮式和固定式兩種 漂浮式波浪能轉換裝置的典型形式主要有鴨式波浪能轉換裝置 筏式波浪能轉換裝 置及振蕩浮子式波浪能轉換裝置 固定式波能裝置的典型形式主要有振蕩水柱式波浪能 轉換裝置 聚波式波浪能轉換裝置及擺式波浪能轉換裝置 下面分別對這些典型波浪能 轉換裝置形式進行介紹 1 2 1 漂浮式波浪能裝置的典型形式 1 鴨式波浪能轉換裝置 英國 Salter 教授于 1974 年開發(fā)出鴨式波浪能轉換裝置 該裝置對二維正弦波的轉換 效率接近 90 如圖 1 1 所示 入射波的運動使動壓力可有效推動鴨身繞軸旋轉 此外 靜壓力的改變也使接近鴨嘴的浮體做升降運動 由于兩種壓力產生的運動是同相位的 鴨式能夠將動能和位能同時通過液壓裝置轉化出去 然后再轉換為電能 金陵科技學院學士學位論文 第 1 章 緒 論 3 圖 1 1 鴨式波浪能轉換裝置原理示意圖 在設計鴨式波浪能轉換裝置時 如果將鴨的質量重心位置設計成可調的 就可以使 其固有周期與波浪周期相匹配 從而最大程度地利用波浪能 研究結果表明 理想運行 條件下 鴨式裝置效率接近 90 但在不規(guī)則波作用下系統(tǒng)效率則要低很多 鴨式裝置 雖然是一種有效的波能轉換裝置 但它存在嚴重的不足 裝置可靠性差 在惡劣的海洋 環(huán)境下極易損壞 所以鴨式裝置沒有得到廣泛推廣 2 筏式波浪能轉換裝置 Cockerell 教授和 Haren 教授同時提出了采用筏式裝置作為波浪能轉換裝置的方法 如圖 1 2 所示 筏通過鉸鏈相互鉸接在一起 能量轉換裝置置于每一鉸鏈處 波浪運動 引起筏產生沿鉸接的轉動 從而反復壓縮液壓活塞以輸出機械能 三聯(lián)筏裝置是最簡單 的一種筏式波浪能轉換裝置 研究人員對該裝置作了較廣泛的理論和試驗研究 與鴨式 裝置運行特性相似 當系統(tǒng)固有頻率與波浪頻率一致時 其輸出效率最高 此外當筏式 裝置在三維波中運行時 其效率有望超過 100 這是由于當入射波浪的頻率接近系統(tǒng)的 固有頻率時 入射波和輻射波之間的相互作用在筏附近的波浪產生了聚集效應 金陵科技學院學士學位論文 第 1 章 緒 論 4 圖 1 2 筏式波浪能轉換裝置原理示意圖 筏式波浪能裝置轉換的問題主要有兩個 一是筏的實體尺寸過大 尤其是在波浪能 密度較小的區(qū)域 所需的筏式系統(tǒng)表面積將更加龐大 另一是在惡劣的海洋環(huán)境下如何 系泊的問題 對于如此大的筏式系統(tǒng) 系泊問題將是最為嚴峻的考驗 因此 盡管筏式 波浪能裝置的轉換效率較高 但由于系泊困難及筏費用過高 致使筏式波浪能轉換裝置 的實用性顯著降低 3 振蕩浮子式波浪能轉換裝置 如圖 1 3 所示 振蕩浮子式波浪能轉換裝置利用一個放置在波浪中的浮子作為裝置 的吸能機構 然后將浮子所吸收的能量通過一個放在岸上的機械裝置或液壓裝置轉換出 去 以驅動發(fā)電機發(fā)電 該裝置由浮子 傳動機構 發(fā)電機以及保護機構等幾部分構成 振蕩浮子式波浪能轉換裝置從原理上來看是利用附體的運動發(fā)電 與鴨式轉換裝置 筏 式轉換裝置相類似 圖 1 3 振蕩浮子式波浪能轉換裝置原理示意圖 目前 日本和美國的研究人員已研制出了幾種利用浮子相對于固定或浮動參照點的 金陵科技學院學士學位論文 第 1 章 緒 論 5 運動來發(fā)電的波浪能轉換裝置 我國的中國科學院廣州能源研究所也研制了一種該類型 的發(fā)電裝置 振蕩浮子式岸基波浪能轉換裝置 并已對這種形式的轉換裝置進行相關 物理模型試驗研究 1 2 2 固定式波浪能裝置的典型形式 1 振蕩水柱式波浪能轉換裝置 振蕩水柱式波浪能轉換裝置主要由前港 氣室 透平機及發(fā)電機等部分組成 如圖 1 4 所示 在波浪作用下 氣室內的水柱產生振蕩 壓縮其上方的氣體往復通過透平機 將波浪能轉換變成透平機的機械能 從而驅動發(fā)電機發(fā)電 該裝置可以依靠共振來加強波浪水柱的運動 氣室內的水柱在波浪的作用下上下往 復運動時本身有一個固有頻率 當波浪的頻率與氣室內水柱的固有頻率相近時 系統(tǒng)將 產生共振 從而加大氣室內水柱的振幅 研究發(fā)現(xiàn) 當裝置處于共振狀態(tài)時 波浪與氣 室內水柱的聯(lián)合作用使得物體在波浪前進方向的波高增加 而裝置背部的波高則會減小 從而增加了波浪能轉換裝置的能量轉換效率 圖 1 4 振蕩水柱式波浪能轉換裝置原理示意圖 振蕩水柱式波浪能轉換裝置的優(yōu)點有 透平機等相對脆弱的機械部分不與波浪接觸 只與往復流動的氣體接觸 因此 相對比與波浪直接接觸的直接式波浪能轉換裝置的抗 惡劣氣候性能較好 故障率較低 裝置的缺點有 建造費用貴 轉換效率低 裝置將波 浪能轉換為電能的效率只有 10 30 2 聚波式波浪能轉換裝置 聚波式波浪能轉換裝置是一種基于聚波理論的波浪能轉換裝置 如圖 1 5 所示 聚 波式波浪能裝置是由一個比海平面高的高位水庫和一個聚波的聚波波道構成 聚波波道 是兩道用鋼筋混凝土筑成的對數(shù)螺旋正交曲面 從海洋中延伸到高位水庫里 兩道聚波 曲面在高位水庫內相接 當波浪進入聚波波道時 由于聚波波道的聚波作用 使波浪的 金陵科技學院學士學位論文 第 1 章 緒 論 6 波高增大 使海水越過鋼筋混凝土墻進入高位水庫中 水庫里的水通過一個低水位的水 輪發(fā)電機發(fā)電 圖 1 5 聚波式波浪能轉換裝置原理示意圖 聚波式波浪能轉換裝置的優(yōu)點是 因在波浪能轉換中沒有活動部件參與 故可靠性 好 維護費用低 輸出較穩(wěn)定且能量轉換效率較高 其轉換效率在 65 75 之間 裝置的缺點是對海洋地形的要求極高 在實際工程應用中不容易廣泛推廣 3 擺式波浪能轉換裝置 擺式波浪能轉換裝置原理是利用裝置的擺式機構將波浪能轉換成機械能或勢能 從 而直接對外做功或轉換為電能 如圖 1 6 所示 該裝置由擺子機構 轉換機構以及發(fā)配 電機構三個部分組成 擺子機構是實現(xiàn)波浪能轉換為機械能過程的機構 轉換機構是實 現(xiàn)機械能轉換為電能過程的機構 發(fā)配電機構是實現(xiàn)電能傳輸過程的機構 其中擺子機 構是轉換裝置的關鍵所在 水動力的實驗研究以及能量轉換效率提高的研究是研究工作 的重點 金陵科技學院學士學位論文 第 1 章 緒 論 7 圖 1 6 擺式波浪能轉換裝置原理示意圖 擺式波浪能轉換裝置較其他類型的裝置有許多優(yōu)勢 裝置的成本較低 結構簡單 能夠較好地適應惡劣的海洋環(huán)境 波浪能轉換效率較高 裝置的缺點是 與振蕩水柱式 裝置相比 轉換效率受擺板后去流段長度的影響較大 較不穩(wěn)定 1 3 本文主要研究內容 本文的研究是針對波浪能轉換裝置的設計與仿真研究工作來開展的 通過深入研究 波浪能轉換技術的發(fā)展現(xiàn)狀及波浪能轉換裝置的原理 并借助于計算機輔助設計與仿真 分析 完成一套新型的波浪能轉換裝置的設計和仿真研究工作 通過本課題的研究工作 可以為后續(xù)進行的實際工程施工應用研究及進一步深入優(yōu)化研究工作提供非常有價值的 材料 因此 本課題擬從以下方面來進行研究 提出一套新型波浪能轉換裝置的總體設計方案 進一步確定裝置的物理模型及能量 轉換路徑 并綜合考慮實際工程應用時的制造 運輸 安裝以及維護等因素 對方案進 行工程應用可行性改造 1 4 設計和研究的內容和重點 本論文主要研究的是點頭鴨波浪能發(fā)電裝置的波能采集以及能量轉化裝置 總體結 構的設計 并對零件進行分析驗證 本文包含 波能采集器的設計 能量轉化裝置 即把擺式往復運動轉化為單向旋轉運動 傳動裝置 把單向旋轉運動經過加速后傳到發(fā)電機 整體框架的設計與固定 各零部件的受力分析與校核 金陵科技學院學士學位論文 第 2 章 擺式波浪能發(fā)電裝置方案設計 8 第 2 章 擺式波浪能發(fā)電裝置方案設計 2 1 概述 擺式波浪能發(fā)電裝置是三大商業(yè)應用波浪能發(fā)電裝置之一 其主體是隨著波浪擺動 的擺體 擺體是擺式裝置的一級能量轉換機構 在波浪的作用下 擺體作左右擺動 將 波浪能轉換成擺體的動能 與擺體相聯(lián)的通常是一套液壓裝置 它將擺體的動能轉換 成液壓裝置的動能 再帶動發(fā)電機發(fā)電 擺體的運動很適合波浪大推力和低頻的特性 因此擺式裝置的轉換效率較高 但機械和液壓機構的維護較為困難 擺式裝置的另一優(yōu) 點是可以方便地與相位控制技術相結合 相位控制技術可以使波浪能裝置吸收迎波寬 度以外的波浪能 從而大大提高裝置的效率 本課題技術要求 一般說來 一級能量轉換裝置直接與波浪相互作用 將波浪能轉換成裝置的動能 或水的位能或中間介質如液壓油等的壓力能等 二級能量轉換裝置將一級能量轉換所 得到的能量轉換成旋轉機械的動能 如水力透平 空氣透平及液壓馬達等 三級能量 轉換將旋轉機械的動能通過發(fā)電機轉換成電能 由此三級能量轉換裝置完成了從波浪 能到電能的轉換 實現(xiàn)了波浪能發(fā)電 本課題研究的工作要求 擺式波浪發(fā)電裝置 其特征在于 該擺式波浪發(fā)電裝置包含一個主體框架 多個 成列的單向驅動單元 多個分別連接所述單向驅動單元的擺動單元 多個分別連接所 述擺動單元的浮體單元 多個分別連接所述單向驅動單元的均勻轉速單元 一個傳動 軸 一個變速單元 及一個發(fā)電機 該主體框架包括一個延伸入水中的舵板 每一個 單向驅動單元設置于該主體框架上 并包括一個輸入齒輪 一個輸出轉軸 及一個連 接于該輸入齒輪與輸出轉軸之間的齒輪傳動組 該輸入齒輪的順時針與逆時針旋轉都 能經由該齒輪傳動組驅動該輸出轉軸朝固定方向旋轉 每一個擺動單元連動該輸入齒 輪 每一個浮體單元包括兩個分別連接該擺動單元的浮體 所述浮體因波浪而交互浮 沈 能使該擺動單元連動該輸入齒輪朝順時針與逆時針方向交互旋轉 每一個均勻轉 速單元與其中一個輸出轉軸連接 所述均勻轉速單元經由該傳動軸連動該變速單元 該發(fā)電機設置于該主體框架上并接收該變速單元的旋轉動能產生電能 2 2 方案設計 為更進一步闡述本發(fā)明為達成預定發(fā)明目的所采取的技術手段及功效 以下結合 附圖及較桂實施例 對依據(jù)本發(fā)明提出的擺式波浪發(fā)電裝置其具體實施方式 結 構 特征及其功效 詳細說明如后 金陵科技學院學士學位論文 第 2 章 擺式波浪能發(fā)電裝置方案設計 9 有關本發(fā)明的前述及其他技術內容 特點及功效 在以下配合參考圖式的較桂實 施例的詳細說明中將可清楚的呈現(xiàn) 為了方便說明 在以下的實施例中 相同的元件 以相同的編號表示 下面結合附圖及實施例對本發(fā)明進行詳細說明 如圖 2 1 圖 2 2 圖 2 3 所示 本發(fā)明擺式波浪發(fā)電裝置 200 的第一較桂實 施例包含一個主體框架 20 一個單向驅動單元 30 一個均勻轉速單元 80 一個變 速單元 40 一個擺動單元 50 一個浮體單元 60 及一個發(fā)電機 70 該主體框架 20 包括多個相間陽地沿一長方向 X 延伸的第一杠條 21 多個相間 陽地沿一垂直于該長方向 X 的橫方向 Y 延伸且連接所述第一杠條 21 的第二杠條 22 兩個分別設置于所述第一杠條 21 末端的舵板 23 及一個矗立于所述第一杠條 21 間的支撐架 24 圖 2 1 是說明該第一較桂實施例中 一個單向驅動單元 一個均勻轉速單元 一 個致動擺臂及一個發(fā)電機的連接結構的立體圖 圖 2 1 發(fā)電機連接結構的立體圖 圖中 30 單向驅動單元 31 輸入轉軸 32 輸出轉軸 33 齒輪傳動組 40 變速單元 51 致動擺臂 52 左連動臂 53 右連動臂 70 該發(fā)電機 80 均勻轉速單元 84 輸出齒輪 330 輸入齒輪 331 第一齒輪 332 第二齒輪 333 第三齒輪 334 第四齒輪 圖 2 2 是說明該第一較桂實施例中 該單向驅動單元 該致動擺臂 一個輸入轉 軸 及一個輸出轉軸的連接結構的側視圖 金陵科技學院學士學位論文 第 2 章 擺式波浪能發(fā)電裝置方案設計 10 圖 2 2 連接結構的側視圖 圖中 30 單向驅動單元 31 輸入轉軸 32 輸出轉軸 33 齒輪傳動組 40 變速單元 51 致動擺臂 52 左連動臂 70 該發(fā)電機 80 均勻轉速單元 81 接塊 82 第二連接塊 83 彈性元 件 84 輸出齒輪 330 輸入齒輪 331 第一齒輪 332 第二齒輪 333 第三齒輪 334 第四齒輪 圖 2 3 是說明該第一較桂實施例的使用情形的示意圖 圖 2 3 使用情形的示意圖 圖中 20 主體框架 20 主體框架 50 擺動單元 51 致動擺臂 52 左連動臂 53 右連動 金陵科技學院學士學位論文 第 2 章 擺式波浪能發(fā)電裝置方案設計 11 臂 54 兩個輔助擺臂 55 擺動桿 61 浮體 70 發(fā)電機 330 輸入齒輪 2 3 整體方案論證 根據(jù)以往的研究成果可以在波浪能裝置的研究現(xiàn)狀和發(fā)展中找到都不是很成熟 很多缺點 如收縮通道式發(fā)電裝置 轉換效率低 并在海邊占用空間大 無沖擊漂浮 電力傳輸推廣 岸式波力意味著更高的環(huán)保要求等 該方案采用純吸收機械建設和波浪 能 轉換效率高 占地面積小 維護方便 便于電力傳輸?shù)霓D換 使高價值的研究 金陵科技學院學士學位論文 第 3 章 擺式波浪能發(fā)電裝置的結構設計 12 第 3 章 擺式波浪能發(fā)電裝置的結構設計 3 1 漂浮系統(tǒng)的運動計算 設計流程 根據(jù)一個工作環(huán)境是浮在海面上 鹽水腐蝕性 耐腐蝕性強的塑料材料 韌性好 適合于制造浮動儲存空間 3 2 主體結構的設計 擺式波浪能發(fā)電裝置主要通過齒輪傳動機構來實現(xiàn)發(fā)電的 把擺式的機械能轉變?yōu)辇X輪傳動 然后傳動到發(fā)電機上面去 3 3 齒輪傳動設計 應盡量使相嚙合齒輪的齒數(shù)之間沒有公約數(shù) 以便使齒輪在使用過程中各齒之間都能相互嚙合 以加速磨合 模數(shù) 3 m 3 3 1 第一級齒輪傳動設計 a 選材料 確定初步參數(shù) 1 選材料 小齒輪 40Cr 鋼調制 平均取齒面硬度為 260HBS 大齒輪 45 鋼調制 平均取齒面硬度為 260HBS 2 初選齒數(shù) 小齒輪的齒數(shù)為 Z1 20 則大齒輪的齒數(shù)為 Z2 20 2 1 42 3 齒數(shù)比即為傳動比 1 204 i 4 選擇尺寬系數(shù) d 和傳動精度等級情況 參照 機械設計手冊 并根據(jù)以前 學過的知識選取 d 0 6 小齒輪直徑 d1 60mm 則小齒輪的尺寬為 b d d1 0 6 60 20mm 5 齒輪圓周速度為 參照 機械設計手冊 選精度等級為s m5 10648061 nv 9 級 6 計算小齒輪轉矩 T1 mN10 486 25 95 961 npT 7 確定重合度系數(shù) Z Y 由公式可知重合度為 120 38 金陵科技學院學士學位論文 第 3 章 擺式波浪能發(fā)電裝置的結構設計 13 則由手冊中相應公式可知 87 03695 14 Z2 7 025 Y 8 確定載荷系數(shù) KH K F 確定使用系數(shù) KA 查閱 機械設計手冊 選取使用系數(shù)為 KA 1 85 確定動載系數(shù) Kv 查閱 機械設計手冊 選取動載系數(shù) Kv 1 10 確定齒間載荷分布系數(shù) KHa K Fa m N10 23 703601 4852 21 dbTFAtA 則 7 022 ZHa 45 69 YFa 載荷系數(shù) KH K F 的確定 由公式可知 0 315 08 1 VA423 509 3 HaF b 齒面疲勞強度計算 1 確定許用應力 H 總工作時間 th 假設該切斷機的壽命為 10 年 每年工作 300 天 每天工 作 8 個小時 則 h120835 應力循環(huán)次數(shù) N1 N 2 8 6 6 6 6 3110 304570046 hiiihv tTtrn7812 15 uNv 壽命系數(shù) Zn1 Z n2 查閱相關 機械設計手冊 選取 Zn1 1 0 Z n2 1 15 接觸疲勞極限取 hlim1 720MPa hlim2 580MPa 安全系數(shù)取 S h 1 0 許用應力 h1 h2 MPa72019 62lim1 hnHhZ 34 52li2hnhS 金陵科技學院學士學位論文 第 3 章 擺式波浪能發(fā)電裝置的結構設計 14 2 彈性系數(shù) ZE 查閱 機械設計手冊 可選取 MPa190 EZ 3 節(jié)點區(qū)域系數(shù) ZH 查閱 機械設計手冊 可選取 ZH 2 5 4 求所需小齒輪直徑 d1 m34 57208 5194 61 09 23 211 hedhuTk 與初估大小基本相符 5 分度圓直徑 d1 d2 601 z m126432 zd 6 確定尺寬 取大齒輪尺寬為 b1 20mm 小齒輪尺寬取 b2 20mm 3 3 2 第二級齒輪傳動設計 a 選材料 確定初步參數(shù) 1 選材料 小齒輪 40Cr 鋼調制 平均取齒面硬度為 260HBS 大齒輪 45 鋼調制 平均取齒面硬度為 260HBS 2 初選齒數(shù) 取小齒輪的齒數(shù)為 18 則大齒輪的齒數(shù)為 18 2 22 40 3 齒數(shù)比即為傳動比 2 1840 i 4 選擇尺寬系數(shù) d 和傳動精度等級情況 參照 機械設計手冊 并根據(jù)以前 學過的知識選取 d 2 3 初估小齒輪直徑 d1 54mm 則小齒輪的尺寬為 b d d1 2 3 39 26mm 齒輪圓周速度為 參照手冊選精度等級為 9 級 s 05m 6078460n1 5 計算小齒輪轉矩 T1 mN10 2796 1 9np5 9T 561 6 確定重合度系數(shù) Z Y 由公式可知重合度為 4 1028 3 則由手冊中相應公式可知 68 37 4 Z1 05 2 0 Y 金陵科技學院學士學位論文 第 3 章 擺式波浪能發(fā)電裝置的結構設計 15 7 確定載荷系數(shù) KH K F 確定使用系數(shù) KA 查閱 機械設計手冊 選取使用系數(shù)為 KA 1 85 確定動載系數(shù) Kv 查閱 機械設計手冊 選取動載系數(shù) Kv 1 0 確定齒間載荷分布系數(shù) KHa K Fa m N10 6 1956840 2121 dbTFAtA 則 3 6 022 ZHa 47 8 YFa 載荷系數(shù) KH K F 的確定 由公式可知 2 3 150 81 VA 3 4732 HaF c 齒面疲勞強度計算 1 確定許用應力 H 總工作時間 th 假設該彎曲機的壽命為 10 年 每年工作 300 天 每天工 作 8 個小時 則 h120835 應力循環(huán)次數(shù) N1 N 2 7 6 6 6 6 311035 3045706 hiiihv tTtrn6712 1 253 uNv 壽命系數(shù) Zn1 Z n2 查閱 機械設計手冊 選取 Zn1 1 33 Z n2 1 48 接觸疲勞極限取 hlim1 760MPa hlim2 760MPa 安全系數(shù)取 S h 1 許用應力 h1 h2 MPa8 103 762lim1 hnHhSZ 24 2li2hnh 2 彈性系數(shù) ZE 查閱 機械設計手冊 可選取 a190 EZ 3 節(jié)點區(qū)域系數(shù) ZH 查閱 機械設計手冊 可選取 ZH 2 5 4 求所需小齒輪直徑 d1 金陵科技學院學士學位論文 第 3 章 擺式波浪能發(fā)電裝置的結構設計 16 m0 7 8 124605953 28 1 3 23 211 hedhZuTk 與初估大小基本相符 5 分度圓直徑 d1 d2 0431 z m541832 zd 6 確定尺寬 取大齒輪尺寬為 b1 39 2 3 26mm 小齒輪尺寬取 b2 26mm 3 4 軸的校核 3 4 1 一軸的校核 軸直徑的設計式 89m 2740 61nPC2 0159333T 6 d 取 d 30 軸的剛度計算 a 按當量彎矩法校核 1 設計軸系結構 確定軸的受力簡圖 彎矩圖 合成彎矩圖 轉矩圖和當量彎矩 圖 金陵科技學院學士學位論文 第 3 章 擺式波浪能發(fā)電裝置的結構設計 17 圖 3 2 軸的受力轉矩彎矩圖 2 求作用在軸上的力如表 3 1 作圖如圖 3 2c 金陵科技學院學士學位論文 第 3 章 擺式波浪能發(fā)電裝置的結構設計 18 表 3 1 作用在軸上的力 垂直面 Fv 水平面 Fh 軸承 1 F2 12N F4 891N 齒輪 2 NBvF1367498NFAH 軸承 3 F1 476N F3 1570N 帶輪 4 0Fv 1056N BHF 3 求作用在軸上的彎矩如表 3 2 作出彎矩圖如圖 3 2d 圖 3 2e 表 3 2 作用在軸上的彎矩 垂直面 Mv 水平面 Mh 1308N m9 Ft1 vM 97101 cHFM N mm 合成彎矩 截面 97128 m 722 053410498 v 15N m204367 389H 合成彎矩 截面 1N 532 M 4 作出轉彎矩圖如圖 3 2f 5 作出當量彎矩圖如圖 3 2g 并確定可能的危險截面 如圖 3 2a 并算出 危險截面的彎矩如表 3 3 表 3 3 截面的彎矩 截面 10543N mTM22 e 截面 6 6 確定許用應力 已知軸材料為 45 鋼調質 查表得 650MPa 用插入法查表得 102 5MPa b b0 60MPa b1 59 01260 7 校核軸徑如表 3 4 金陵科技學院學士學位論文 第 3 章 擺式波浪能發(fā)電裝置的結構設計 19 表 3 4 驗算軸徑 截面 m621 0M3be d 截面 48 31be 結論 按當量彎矩法校核 軸的強度足夠 b 軸的剛度計算 7171410 2 90 865 233 57 ipiipinipi ILTIILTG 2I4p1d 50832462Ip d 170348692I 5p d 4365102I7p d 648385 012 164829520834671695270483652079 所以軸的剛度足夠 求作用在軸上的力如表 3 5 并作圖如圖 3 3c 表 3 5 作用在軸上的力 垂直面 Fv 水平面 Fh 1 F3 1627N F1 8362N 2381NBvF 867NFAH 金陵科技學院學士學位論文 第 3 章 擺式波浪能發(fā)電裝置的結構設計 20 2 F4 754N F3 12619N 軸 0Fv 21848N BHF 2 計算出彎矩如表 6 并作圖如圖 3 3d 圖 3 3e 表 3 6 軸上的彎矩 垂直面 Mv 水平面 Mh m 314825N9 Fp1 vM16804793 51 cHFM N mm 合成彎矩 截面 m640N 607 22 1897 v 5317H 合成彎矩 截面 60 31546722 M 3 作出轉彎矩圖如圖 3 2f 4 作出當量彎矩圖如圖 3 2g 并確定可能的危險截面 和 的彎矩 如表 3 7 表 3 7 危險截面的彎矩 截面 m1640N T22 e 截面 3 M e 6 確定許用應力 已知軸材料為 45 鋼調質 查表得 650MPa 用插入法查表得b 102 5MPa 60MPa b0 b1 59 0260 7 校核軸徑如表 3 8 表 3 8 校核軸徑 截面 m846 91 0M3be d 截面 0 5 31be 結論 按當量彎矩法校核 軸的強度足夠 b 軸的剛度計算 金陵科技學院學士學位論文 第 3 章 擺式波浪能發(fā)電裝置的結構設計 21 7171410 2 90 865 233 57 ipiipinipi ILTIILTG 所以軸的剛度足夠 附 軸二與軸三的校核與軸一相同 取軸二的直徑為 35 軸三的直徑為 30 經檢驗 合格 3 5 鍵的校核 平鍵的強度校核 a 鍵的選擇 鍵的類型應根據(jù)鍵聯(lián)接的結構使用要求和工作狀況來選擇 選擇時應考慮傳遞轉 拒的大小 聯(lián)接的對中性要求 是否要求軸向固定 聯(lián)接于軸上的零件是否需要沿軸 滑動及滑動距離長短 以及鍵在軸上的位置等 鍵的主要尺寸為其橫截面尺寸 鍵寬 b 鍵高 h 與長度 L 鍵的橫截面尺寸 b h 依軸的直徑 d 由標準中選取 鍵的長度 L 一 般可按輪轂的長度選定 即鍵長略短于輪轂長度 并應符合標準規(guī)定的長度系列 故根據(jù)以上所提出的以及該機工作時的要求 故選用 A 型普通平鍵 由 機械設計手冊 查得 鍵寬 b 16mm 鍵高 h 10mm 鍵長 L 30mm b 驗算擠壓強度 平鍵聯(lián)接的失效形式有 對普通平鍵聯(lián)接而言 其失效形式為鍵 軸 輪轂三者 中較弱的工作表面被壓潰 工程設計中 假定壓力沿鍵長和鍵高均勻分布 可按平均擠壓應力進行擠壓強度 或耐磨性的條件計算 即 靜聯(lián)接 ppkldT 2 式中 傳遞的轉矩 mN 軸的直徑 鍵與輪轂的接觸高度 mm 一般取 k 2hk 鍵的接觸長度 mm 圓頭平鍵 l bLl 許用擠壓應力 p MPa 鍵的工作長度 m1 425 bLl 擠壓面高度 10hk 轉矩 npT65 9 N09 587 966 許用擠壓應力 查 機械設計手冊 表 Pa p 則 擠壓應力 金陵科技學院學士學位論文 第 3 章 擺式波浪能發(fā)電裝置的結構設計 22 MPa602 4315960 2 6 ap MPklT 所以 此鍵是安全的 附 鍵的材料 因為壓潰和磨損是鍵聯(lián)接的主要失效形式 所以鍵的材料要求有 足夠的硬度 國家標準規(guī)定 鍵用抗拉強度不低于 的鋼制造 如 45 鋼 Q275 a60 等 3 6 軸承的校核 滾動軸承是又專業(yè)工廠生產的標準件 滾動軸承的類型 尺寸和公差等級均已制 訂有國家標準 在機械設計中只需根據(jù)工作條件選擇合適的軸承類型 尺寸和公差等 級等 并進行軸承的組合結構設計 試選 10000K 軸承 查 機械設計手冊 GB281 1994 查得 10000K 軸承的性能參 數(shù)為 C 14617N Co 162850N 脂潤滑 190min 3 6 2 壽命計算 a 計算軸承內部軸向力 查表得 10000K 軸承的內部軸向力 2 YFRs 65 0 32815cos67 0cos Y N474158 39222 RF 則 9028 121 YRS b 計算外加軸向載荷 XF c 計算軸承的軸向載荷 因為 21S 故 軸承 1 N902811 SAF 軸承 2 2 d 當量動載荷計算 由式 aRpPYXfF 查表得 的界限值 A 42 05 1 tge 90 152382R 金陵科技學院學士學位論文 第 3 章 擺式波浪能發(fā)電裝置的結構設計 23 7 012498 RAF 查表知 eR 1 故 39 0cos4 YX FRA 701 故 22 則 N905 90283 14 11 ARpPYXf 13 27 1 ARpPFfF 式中 輕度沖擊的運轉 pf 由于 且軸承 1 2 采用型號 尺寸相同的軸承 故只對軸承 2 進行壽21PF 命計算 N032 e 計算軸承壽命 h45019 367 2 110660 PhFCnL f 極限轉速計算 由式 lim21nfmas 5 0367 PFC 6 7 21rctgrctgRA 查得 載荷系數(shù) 1f 載荷分布系數(shù) 802 故 minr9 650 masn ir1 計算結果表明 選用的 10000K 型圓柱孔調心軸承能滿足要求 金陵科技學院學士學位論文 總結 24 總 結 經過大學的四年學習 我們學習了大學的全部基礎課程和專業(yè)課程 在此基礎上 我們已經 穿插的進行了許多次的課程設計 減速箱設計 金工制圖課程設計等 還有每個學期不同周期 的課程實踐 金工實習 生產工藝實習 畢業(yè)實習等 然而也是這些課程設計和課程實踐使我 認識和熟悉本專業(yè)的基礎知識和實踐過程 為我更好的完成畢業(yè)設計打下良好的基礎 這次畢業(yè) 設計是對我們大學四年所學知識的綜合運用 也是對我們大學四年所學知識的考核 因此這次在 大學結束時的畢業(yè)設計顯得猶為重要 這也就給我們一次對所有學過的課程的系統(tǒng)和深入理解的 機會 也是理論聯(lián)系實際最好的機會 無疑會對我們學習的內容的深層次的鞏固 對我們即將走 進的工作崗位有很大的益處 本次畢業(yè)設計是我們走上工作崗位之前最后的一次演練機會 它將為我們今后勝任工作打下 良好的基礎 為我們提高自身的設計能力提供了一個難能可貴的平臺 在本次畢業(yè)設計中 我綜 合運用了所學的各門基礎課程和專業(yè)課程知識 掌握了機械設計的一般規(guī)律 樹立了正確的設計 思想 培養(yǎng)了我們分析和解決問題的能力 學會了獨立搜集各種技術資料 研究工藝方案的能力 能獨立制定設計方案 正確分析設計中出現(xiàn)的各種矛盾和難題 并提出解決方案 在工藝過程的 設計 機床部件的選擇 加工工藝的特點 主軸箱的設計及其特點 以及各種的機床技術要求等 方面 都有了長足的進步 大大培養(yǎng)了我們的機械設計能力 通過畢業(yè)設計 更好地學會了運用 標準 規(guī)范 手冊 圖冊和查閱有關技術資料 培養(yǎng)機械設計的基本技能 在這里最要感謝的是我的指導老師 在規(guī)定的時間內完成設計任務 同時也學到許多道 理 為我更好的走向工作崗位打下基礎 金陵科技學院學士學位論文 參考文獻 25 參考文獻 1 馮辛安主編 機械制造裝備設計 北京 機械工業(yè)出版社 19991 0 2 盛伯浩主編 機床的現(xiàn)狀與發(fā)展 北京 機械工業(yè)出版社 2005 1 3 王愛玲 白恩遠等編著 現(xiàn)代數(shù)控機床 北京 國防工業(yè)出版社 2004 4 4 關穎主編 數(shù)控車床 沈陽 遼寧科學技術出版社 2005 1 5 盛曉敏 鄧朝暉 先進制造技術 M 北京 機械工業(yè)出版社 2002 6 謝紅 數(shù)控機床機器人機械系統(tǒng)設計指導 M 上海 同濟大學出版社 2004 8 7 高葉玲主編 數(shù)控機床的結構與傳動 北京 國防工業(yè)出版社 1977 7 8 孫恒 陳作模主編 機械原理 北京 高等教育出版社 2000 8 9 濮良貴 剛主編 機械設計 北京 高等教育出版社 2004 2 10 卜云峰主編 械工程及自動化簡明手冊 北京 機械工業(yè)出版社 2001 6 11 陳遠齡 黎亞元主編 機床電器自動控制 北京 重慶大學出版社 2000 7 12 賈志新 艾東梅主編 數(shù)控車床的致命性分析 J 2000 4 81 82 13 許洪基 雷光主編 現(xiàn)代機械傳動手冊 北京 機械工業(yè)出版社 2002 5 14 卜炎主編 實用軸承設計手冊 北京 機械工業(yè)出版社 2004 1 15 章宏甲 黃誼 王積偉主編 液壓與氣壓傳動 北京 機械工業(yè)出版社 2000 5 16 成大先主編 機械設計手冊 北京 化學工業(yè)出版社 2004 1 17 王積偉 黃誼等主編 液壓與氣壓傳動 北京 機械工業(yè)出版社 2000 5 18 張平格主編 液壓傳動與控制 北京 治金工業(yè)出版社 2004 8 19 沈興全 吳秀玲主編 液壓傳動與控制 北京 國防工業(yè)出版社 2005 1 20 西門子 561 802 系列產品訂貨樣本 西門子 中國 有限公司 自動化與驅動集團 2003 21 關雄飛主編 數(shù)控加工技術綜合訓練 北京 機械工業(yè)出版社 2006 1 金陵科技學院學士學位論文 致謝 26 致 謝 在這次畢業(yè)設計中得到了很多老師和同學的熱心幫助 在這里我要一一向他們表示感謝 首先我 要感謝我們的指導老師李俊武教授 從畢業(yè)設計開始到期末答辯 老師一直嚴格要求我們 為我們安 排了合理的作息時間 避免了由于作息時間無序而出現(xiàn)的懶散現(xiàn)象的發(fā)生 為了能使我們按時勝利的 完成畢業(yè)設計任務 李俊武教授多次帶領我們小組的同學實地參觀搖臂鉆床 加深了我們對鉆床的理 性認識 有的同學設計的課題可查閱的相關資料較少 老師親就親自通過不同途徑為這些同學找到相 關的資料 保證了這些同學的進度 正是在老師有效的指導下 使得我們小組每個同學的進度都達到 了學院的要求 在學院組織的幾次中期檢查中 我們組的同學沒有一個因為進度跟不上而遭到檢查老 師的批評 我很欣賞老師嚴謹?shù)闹螌W態(tài)度 敬佩他的為人 感謝他對我們的耐心指導 我相信這幾個 月來他對我的教誨一定會使我終身受益 還有很多我無法一一列舉姓名的師長和友人給了我指導和幫助 在此衷心的表示感謝 他們的名 字我一直銘記在心 由于我的水平有限 加上時間倉促 設計中的疏漏及錯誤之處再所難免 懇請老 師 讀者批評指正 提出寶貴意見 最后 衷心感謝在百忙之中抽出時間審閱本論文的專家教授