四缸發(fā)動(dòng)機(jī)曲軸機(jī)械加工工藝和鉆兩邊斜油孔專用夾具設(shè)計(jì)
四缸發(fā)動(dòng)機(jī)曲軸機(jī)械加工工藝和鉆兩邊斜油孔專用夾具設(shè)計(jì),發(fā)動(dòng)機(jī),曲軸,機(jī)械,加工,工藝,兩邊,斜油孔,專用,夾具,設(shè)計(jì)
畢業(yè)設(shè)計(jì)(論文)任務(wù)書
設(shè)計(jì)(論文)題目:四缸曲軸加工工藝及夾具設(shè)計(jì) 系: 機(jī)電系 專業(yè): 班級(jí): 學(xué)號(hào):
學(xué)生: 指導(dǎo)教師:
接受任務(wù)時(shí)間
教研室主任 (簽名) 系主任 (簽名)
1.畢業(yè)設(shè)計(jì)(論文)的主要內(nèi)容及基本要求
(1)基本設(shè)計(jì)參數(shù):
①490型柴油機(jī)。
②生產(chǎn)方式:批量生產(chǎn)
(2).主要內(nèi)容及基本要求
①測(cè)繪柴油機(jī)曲軸的總成圖和零件圖。
②確定加工方法,制定加工工藝,編制加工工序卡。
③進(jìn)行曲軸斜油孔加工的工裝設(shè)計(jì)。
④編寫設(shè)計(jì)說明書。
2.指定查閱的主要參考文獻(xiàn)及說明
①《機(jī)械制造工藝手冊(cè)》
②《機(jī)械制造技術(shù)基礎(chǔ)》
③《機(jī)械制造裝備》
④《夾具設(shè)計(jì)》
3.進(jìn)度安排
設(shè)計(jì)(論文)各階段名稱
起 止 日 期
1
查閱資料,了解曲軸的功能以及加工制造的基本知識(shí)
3月5日—3月25日
2
完成曲軸的裝配圖和零件圖的繪制
3月26日—4月10日
3
確定加方法.制定加工工藝.完成工裝設(shè)計(jì)
4月11日—5月22日
4
完成設(shè)計(jì)計(jì)算說明書的編寫
5月23日—6月2日
5
設(shè)計(jì)圖紙與說明書的校對(duì)
6月3日—6月5日
專 業(yè)
機(jī)械加工工序卡片
產(chǎn)品型號(hào)
零(部)件圖號(hào)
A1
共 1 頁
機(jī)制
產(chǎn)品名稱
柴油機(jī)
零(部)件名稱
曲軸
第 1 頁
車 間
工
工序號(hào)
工序名稱
材 料 牌 號(hào)
機(jī)加
21,22
鉆φ10斜油孔
QT600-3
毛坯種類
毛坯外形尺寸
每 批 件 數(shù)
每 臺(tái) 件 數(shù)
鑄造
長(zhǎng)667,直徑φ71
設(shè)備名稱
設(shè)備型號(hào)
設(shè) 備 編 號(hào)
同時(shí)加工件數(shù)
鉆床
Z9416 臥式鉆床
1
夾具編號(hào)
夾具名稱
工 位 器 具 編 號(hào)
工位器具名稱
鉆床專用夾具
冷 卻 液
工序工時(shí)
準(zhǔn) 終
單 件
工
步
號(hào)
工 步 內(nèi) 容
工 藝 裝 備
主軸轉(zhuǎn)速(轉(zhuǎn)/分)
切削速度(米/分)
走刀量(毫米/轉(zhuǎn))
吃 刀 深 度
(毫米)
走刀次數(shù)
工 時(shí) 定 額
描 圖
機(jī)動(dòng)
輔助
描 校
1
鉆中間兩斜油孔φ10,深132
M9416 臥式鉆床
250
8
0.36
1
5
1
1.54
2
鉆兩邊斜油孔φ10,通孔
M9416 臥式鉆床
250
8
0.36
5
1
1.16
底圖號(hào)
,
裝訂號(hào)
編制
(日期)
審核
(日期)
會(huì)簽
(日期)
班級(jí)
姓名
標(biāo)記
處數(shù)
更改文件號(hào)
簽字
日期
標(biāo)記
處數(shù)
更改文件號(hào)
簽字
07.5.20
03.3
周前洪
專 業(yè)
機(jī)械加工工藝過程卡片
產(chǎn)品型號(hào)
零(部)件圖號(hào)
A1
共 2 頁
機(jī)制
產(chǎn)品名稱
零(部)件名稱
曲軸
第 1 頁
材料牌號(hào)
QT600-3
毛坯
種類
鑄造
毛坯外
形尺寸
長(zhǎng)667,直徑φ71
毛坯件數(shù)
批量生產(chǎn)
每臺(tái)件數(shù)
備
注
工
工 序
車
工
工 時(shí)
序
工 序 內(nèi) 容
設(shè) 備
工 藝 裝 備
準(zhǔn)
單
號(hào)
名 稱
間
段
終
件
1
車
粗、精車左端面,粗車3mm,精車0.5mm
機(jī)加
CA6140
YG5端面車刀,游標(biāo)卡尺,專用夾具,
2
車
粗、精車右端面, 粗車3mm,精車0.5mm
機(jī)加
CA6140
YG5端面車刀,游標(biāo)卡尺,專用夾具
3
車
粗、精車主軸頸Ⅰ,由φ71車至φ64保證質(zhì)量
機(jī)加
CA6140
YG5外圓車刀,專用夾具,游標(biāo)卡尺
4
車
粗、精車主軸頸Ⅱ,由φ71車至φ64保證質(zhì)量
機(jī)加
CA6140
YG5外圓車刀,專用夾具,游標(biāo)卡尺
5
車
粗、精車主軸頸Ⅲ,由φ71車至φ64保證質(zhì)量
機(jī)加
CA6140
YG5外圓車刀,專用夾具,游標(biāo)卡尺
6
車
粗、精車主軸頸Ⅳ,由φ71車至φ64保證質(zhì)量
機(jī)加
CA6140
YG5外圓車刀,專用夾具,游標(biāo)卡尺
7
車
粗、精車主軸頸Ⅴ,由φ71車至φ64保證質(zhì)量
機(jī)加
CA6140
YG5外圓車刀,專用夾具,游標(biāo)卡尺
描 圖
8
車
粗、精車主軸頸兩邊壁面
機(jī)加
CA6140
YG5端面車刀,專用夾具,游標(biāo)卡尺
9
車
主軸頸端壁面倒角R3、保證粗糙度Ra=0.4
機(jī)加
CA6140
YG5,45度車刀,專用夾具,游標(biāo)卡尺
描 校
10
車
粗、精曲柄銷Ⅰ,由φ63車至φ56保證質(zhì)量
機(jī)加
CA6140
YG5外圓車刀,專用夾具,游標(biāo)卡尺
11
車
粗、精曲柄銷Ⅳ,由φ63車至φ56保證質(zhì)量
機(jī)加
CA6140
YG5外圓車刀,專用夾具,游標(biāo)卡尺
底圖號(hào)
12
車
粗、精曲柄銷Ⅱ,由φ63車至φ56保證質(zhì)量
機(jī)加
CA6140
YG5外圓車刀,專用夾具,游標(biāo)卡尺
13
車
粗、精曲柄銷Ⅲ,由φ63車至φ56保證質(zhì)量
機(jī)加
CA6140
YG5外圓車刀,專用夾具,游標(biāo)卡尺
裝訂號(hào)
編制
(日期)
審核
(日期)
會(huì)簽
(日期)
班級(jí)
姓名
標(biāo)記
處數(shù)
更改文件號(hào)
簽字
日期
標(biāo)記
處數(shù)
更改文件號(hào)
簽字
日期
專 業(yè)
機(jī)械加工工藝過程卡片
產(chǎn)品型號(hào)
零(部)件圖號(hào)
A1
共 2 頁
機(jī)制
產(chǎn)品名稱
零(部)件名稱
曲軸
第 2 頁
材料牌號(hào)
QT600-3
毛坯
種類
鑄造
毛坯外
形尺寸
長(zhǎng)667,直徑φ71
毛坯件數(shù)
批量生產(chǎn)
每臺(tái)件數(shù)
備
注
工
工 序
車
工
工 時(shí)
序
工 序 內(nèi) 容
設(shè) 備
工 藝 裝 備
準(zhǔn)
單
號(hào)
名 稱
間
段
終
件
14
車
粗、精車曲柄銷兩邊壁面
機(jī)加
CA6140
YG5端面車刀,游標(biāo)卡尺,專用夾具,
15
車
曲柄銷兩邊倒角R3 、Ra=0.4 μm
機(jī)加
CA6140
YG5,45度車刀,游標(biāo)卡尺,專用夾具
16
車
粗、精車左端外圓、倒角C2 (Ra6.3)
機(jī)加
CA6140
YG5外圓車刀,專用夾具,游標(biāo)卡尺
17
鉆
鉆主軸頸孔104,通孔
機(jī)加
Z525
麻花鉆,專用夾具,游標(biāo)卡尺
描 圖
18
鉆
鉆右端孔46、8、擴(kuò)孔52M7
機(jī)加
Z525
麻花鉆,專用夾具,游標(biāo)卡尺
19
攻
加工螺紋孔8M8
機(jī)加
Z525
麻花鉆,專用夾具,游標(biāo)卡尺
描 校
20
銑
2銑鍵槽1263、1216
機(jī)加
XA6132
盤銑刀銑鍵槽,專用夾具,游標(biāo)卡尺
21
鉆
鉆中間兩個(gè)斜油孔10、深132
機(jī)加
專用機(jī)床
麻花鉆,專用夾具,游標(biāo)卡尺
底圖號(hào)
22
鉆
鉆兩邊斜油孔10通孔
機(jī)加
專用機(jī)床
麻花鉆,專用夾具,游標(biāo)卡尺
23
校核
裝訂號(hào)
編制
(日期)
審核
(日期)
會(huì)簽
(日期)
班級(jí)
姓名
標(biāo)記
處數(shù)
更改文件號(hào)
簽字
日期
標(biāo)記
處數(shù)
更改文件號(hào)
簽字
日期
目 錄
中文摘要 Ⅰ
英文摘要 .............Ⅱ
第1章 設(shè)計(jì)的相關(guān)知識(shí)...........................................................................................1
1.1 畢業(yè)設(shè)計(jì)的目的、要求和內(nèi)容 1
1.1.1 畢業(yè)設(shè)計(jì)的目的 1
1.1.2 畢業(yè)設(shè)計(jì)的基本要求及主要內(nèi)容 1
1.2 畢業(yè)設(shè)計(jì)的步驟 2
1.2.1機(jī)械加工工藝規(guī)程設(shè)計(jì) 2
第二章 零件的分析 3
2.1 零件的作用及分析 3
2.2 曲軸的制造技術(shù)及工藝進(jìn)展 ....3
2.2.1 曲軸的毛坯制造技術(shù)......................................................................................................3
2.2.2 機(jī)械加工技術(shù)..................................................................................................................4
2.2.3 熱處理和表面強(qiáng)化處理技術(shù)..........................................................................................4
第三章 零件的工藝路線及加工工藝.................................................................................5
3.1擬定工藝路線應(yīng)注意的事項(xiàng)...............................................................................................5
3.2 零件的工藝路線..................................................................................................................6
3.2.1 基準(zhǔn)的選擇.......................................................................................................................6
3.2.2 曲軸工藝路線內(nèi)容...........................................................................................................6
3.2.3 零件加工工序內(nèi)容...........................................................................................................7
第四章 專用夾具設(shè)計(jì)及撰寫說明.......................................................................................35
4.1 專用夾具設(shè)計(jì)......................................................................................................................35
4.1.1 設(shè)計(jì)說明..........................................................................................................................35
4.1.2 夾具設(shè)計(jì)分析..................................................................................................................35
4.2 撰寫說明書應(yīng)注意的事項(xiàng)..................................................................................................36
第五章 結(jié) 論............................................................................................................................37
參考文獻(xiàn)........................................................................................................................38
致 謝..........................................................................................................................39
可持續(xù)夾具及固定裝置的高精度安裝的方法論
J. Jamshidi,P.G. maropoulos
英國巴斯大學(xué)機(jī)械工程學(xué)系
摘要
在夾具安裝階段,夾具組件的精確測(cè)量能力決定其精確性,尤其是對(duì)大尺寸的產(chǎn)品和應(yīng)用來說。大量定制一些在設(shè)計(jì)上有多樣性的小批量產(chǎn)品和零部件是十分重要的。產(chǎn)品質(zhì)量應(yīng)該與迅速轉(zhuǎn)換理念相互協(xié)調(diào),對(duì)于敏感元器件及組件而言,以犧牲產(chǎn)品質(zhì)量來提高速度是不明智的,例如在航空航天工業(yè)中所看到的那些零部件。提高精確性對(duì)于夾具的安裝是很有必要的,為了要盡量少用,這可取決于夾具和夾具定位變化的耐受性預(yù)算。在航空航天工業(yè)中,靈活和可重構(gòu)夾具的概念的發(fā)展及固定裝置是夾具的主要開銷成本。吸引他們的是重構(gòu)夾具的可重用性,可持續(xù)使用是由于那些零部件也能夠被重新應(yīng)用到許多種產(chǎn)品和裝配中去。一直不佳的準(zhǔn)確性和可靠性為這類夾具的缺點(diǎn),這篇論文主要是研究可持續(xù)夾具主要零部件的精確定位,影響夾具性能的因素在安裝階段會(huì)得以審查。本文介紹了一種在靈活?yuàn)A具中為了最大限度地減少定位和夾緊的不確定性的方法。
關(guān)鍵詞:可持續(xù)性夾具;夾具安裝;校準(zhǔn)不確定性;夾具的監(jiān)測(cè);計(jì)量;可重復(fù)使用的夾具
1引言
質(zhì)量和可靠性等因素早已經(jīng)轉(zhuǎn)換為新零件固有的特征。在他們的產(chǎn)品和服務(wù)范圍內(nèi),近期市場(chǎng)趨勢(shì)已經(jīng)迫使制造業(yè)走向大規(guī)模定制。其次增加新陳品的多樣化設(shè)計(jì)在部件和組件級(jí)別上遵循第二次高幅度的變化。有先進(jìn)制造系統(tǒng)和技術(shù)的國家提供了更多的靈活性,能使設(shè)計(jì)師更加自由的發(fā)揮想象。例如在過去幾十年發(fā)展起來的一種新的大體積測(cè)量方法,就能測(cè)量及公丈的距離。用來檢測(cè)大尺寸零件的這些設(shè)備通常是由多個(gè)組裝部件所制造出來的。在重組和裝配期間,那些大尺寸產(chǎn)品的制造需要用到專用的夾具和固定裝置,以便于他們的零部件能夠被定位在設(shè)計(jì)基準(zhǔn)上。對(duì)于大批量產(chǎn)品,在計(jì)算機(jī)輔助軟件上就能估算出其主要的花費(fèi)需求,否則,在某些情況下或以其他方式生產(chǎn)的產(chǎn)品成本可能會(huì)是非常高的。這個(gè)問題與客戶不斷用錢來尋求具有更高價(jià)值的市場(chǎng)需求相互矛盾。用一種典型的變化產(chǎn)品可以創(chuàng)建一個(gè)更加具有持續(xù)性的商業(yè),因?yàn)樗軌驖M足相對(duì)比較大地市場(chǎng)需求。由支持產(chǎn)品變化的不同形狀的產(chǎn)品而形成的靈活和可重構(gòu)夾具及固定裝置則是應(yīng)對(duì)上述挑戰(zhàn)關(guān)鍵的解決方案。靈活?yuàn)A具的概念已經(jīng)在研究領(lǐng)域存在了幾年[1]。然而,它們?cè)诤艽蟪潭壬蠜]有充分利用真正的生產(chǎn)設(shè)施,尤其是大尺寸產(chǎn)品的制造,如航空航天設(shè)備。這是由于關(guān)于它們的初始安裝、校準(zhǔn)困難和可重復(fù)性等挑戰(zhàn)往往超出公差要求。這些夾具和高品質(zhì)關(guān)鍵部件裝置的制造以及大量的集成計(jì)量系統(tǒng),都可以減少上述限制。本文包括了有關(guān)安裝的計(jì)量問題和靈活的夾具校準(zhǔn)以及檢測(cè)服務(wù)。
2相關(guān)工作
2.1大型零件的制造和裝配
通常把要精密制造的機(jī)械零件移動(dòng)到機(jī)床工作臺(tái)是必需的,先進(jìn)行粗加工,然后精對(duì)準(zhǔn)和夾緊。在這個(gè)階段,一方面是準(zhǔn)備用于加工高精度的關(guān)鍵所在,然而,這對(duì)于一些大尺寸或重的零部件并不總是可以實(shí)現(xiàn)的。大型產(chǎn)品是指那些與一些不經(jīng)濟(jì)的可能需要處理或在工廠周圍移動(dòng)的的組件一起來達(dá)到制造和裝配的目的[2]。制造業(yè)和這些部件的裝配工藝包括所需機(jī)器和系統(tǒng)的運(yùn)動(dòng)以及這些部件的位置和方向。這些零部件通常定位在大尺寸夾具及固定裝置上該定位的位置。如果這些部件以小批量生產(chǎn),在航空航天工業(yè)、高開銷的情況下,每個(gè)產(chǎn)品將會(huì)出現(xiàn)。在設(shè)計(jì)和制造夾具上,已經(jīng)有了許多嘗試,以便于能夠持有許多種組件的變種。然而,這方法是不可行的,因?yàn)槊舾谢蜿P(guān)鍵的零部件完全是由它們的高精度要求所決定的。與固定的夾具相比較,可調(diào)、可重構(gòu)夾具會(huì)產(chǎn)生更低的重復(fù)性。固定夾具有固定的方式,可以通過焊接或鉚接的接頭固定在一起來實(shí)現(xiàn)。這些機(jī)械故障,例如夾具和固定裝置由于疲勞和塑料變形就是一個(gè)終止其服務(wù)的主要原因,發(fā)送它們?cè)龠M(jìn)行回收。小批量制造的需求是目前常見的淘汰不合格夾具,其使用壽命取決于產(chǎn)品的生命周期。換句話說,在制造變種零件停止不久之后,與之有關(guān)聯(lián)的夾具和固定裝置將會(huì)變得多余。即使夾具有工作順序,但它們?nèi)匀挥袌?bào)廢并送往循環(huán)再造。這種方法會(huì)帶來高負(fù)擔(dān)回收的能耗。在大尺寸零件下的固定夾具和夾具的漂移以及夾具都能影響大尺寸零件組裝的精確性[5]。對(duì)于大尺寸的夾具已經(jīng)開發(fā)出了幾種分析夾具剛性的方法,可用來評(píng)估振動(dòng)的影響因素。在任何情況下更加可持續(xù)生產(chǎn)要通過選擇性方案才能得以實(shí)現(xiàn)。如圖2.1所示。
圖2.1 典型的大型夾具元件
用于制造所延誤的時(shí)間是固定夾具的又一重大缺點(diǎn),這些夾具應(yīng)該在制造前就被訂購,在生產(chǎn)計(jì)劃和產(chǎn)品上市前還可以創(chuàng)建額外的復(fù)雜性。不管他們的類型,大型夾具有一些共同的元素,包括一個(gè)主框架、內(nèi)在的框架,有可能有一個(gè)或數(shù)多個(gè)可移動(dòng)的機(jī)制或更小的組件,如鉗、套管、皮卡和可調(diào)螺絲[表1]。
2.2柔性夾具
開發(fā)的柔性夾具的概念增加了其可持續(xù)性、快速轉(zhuǎn)換以及降低了成本?,F(xiàn)在可以使用現(xiàn)成的模塊來設(shè)計(jì)和組裝夾具。根據(jù)規(guī)定,只有極少數(shù)夾具的專用零件需要設(shè)計(jì)和制造。以這種概念看,大多數(shù)散裝部件、附件關(guān)節(jié)都應(yīng)用的很具體。一旦產(chǎn)品設(shè)計(jì)變異完全制造出來,然后就可以拆卸上述組件和重組成一種新的元件來與未來的設(shè)計(jì)變異相匹配。因?yàn)榻M裝和組件范圍上的設(shè)計(jì)都相當(dāng)接近,所以這種方法是最能降低夾具成本的。
根據(jù)組件的變化水平和工作類型的需求,每一個(gè)不同比例的柔性夾具都需要被重新安排。為了增加使用這種類型夾具的效益,這個(gè)問題在設(shè)計(jì)階段考慮是十分重要的。例如,在可能的情況下,皮卡車的位置和三維定位夾具上的組件的不同變種,甚至完全不同的部分應(yīng)該是在靠近增加兼容性和夾具子系統(tǒng)間變性。夾具關(guān)鍵部件的收集在短期內(nèi)能保證所需夾具的可用性。另外,這些夾具的存儲(chǔ)需要很少空間,因?yàn)椴鸪心K是可能的,通常以腳手架的形式并把它們彼此放在一起。目前在一些汽車公司應(yīng)用到柔性夾具,因?yàn)樗鼈兊木鹊燃?jí)是足夠滿足的。大尺寸制造的夾具設(shè)施盡管沒有許多柔性夾具那樣操作靈活,比如航空航天設(shè)備。準(zhǔn)確性和定位銷的不確定性、夾具的可重復(fù)性以及夾具結(jié)構(gòu)的漂移都出現(xiàn)這樣一個(gè)事實(shí),這些夾具在發(fā)電和航空航天等工業(yè)不能滿足公差要求。一旦它們的精度問題得以解決,這些夾具在上述的工業(yè)中將會(huì)有很高的利用價(jià)值。
圖2.2 夾具與汽車行業(yè)中的可重構(gòu)組件
大量的體積計(jì)量系統(tǒng)和技術(shù)一直有許多新的發(fā)展。依靠計(jì)量系統(tǒng)和技術(shù)的現(xiàn)代激光技術(shù)現(xiàn)在就能夠測(cè)量一些可接受精度的大尺寸產(chǎn)品甚至到幾公丈的產(chǎn)品。在安裝和初期安裝調(diào)試期間,這些系統(tǒng)能夠用來精確定位一些夾具的關(guān)鍵部件。
夾具的安裝通常開始形成機(jī)架或主要框架,然后是那些大的部件和像皮卡和夾具那樣逐漸更小的零部件。計(jì)量系統(tǒng)能夠用于柔性夾具的主要框架和其內(nèi)部框架的安裝,從而來保證每個(gè)零部件彼此之間的準(zhǔn)確定位。表1顯示了這些大規(guī)模的測(cè)量系統(tǒng)數(shù)。跟蹤系統(tǒng)能夠測(cè)量基準(zhǔn)點(diǎn),它是實(shí)現(xiàn)這一目的的最合適的測(cè)量系統(tǒng)。一起跟蹤球式反射鏡在三維空間內(nèi)都可以認(rèn)準(zhǔn)所要記錄的位置。球式反射鏡可以直接練習(xí)目標(biāo)對(duì)象來提供幾何位置信息或可以在機(jī)械重復(fù)的球式反射鏡下應(yīng)用,從這個(gè)角度用激光來跟蹤目標(biāo)或短期目標(biāo)。像一些其他測(cè)量?jī)x器的激光跟蹤有時(shí)候不確定,在夾具的安裝過程中需要做以說明。此外,激光跟蹤和目標(biāo)點(diǎn)之間的光線問題還應(yīng)該考慮到。如果必要的話,多個(gè)跟蹤職位都可以使用,在實(shí)際測(cè)量活動(dòng)中,其結(jié)果必然是伴隨著一個(gè)不確定的說明。經(jīng)過測(cè)量,這些給定的分散的特征值是合理的,這個(gè)問題與一些夾具或夾具的安裝及以后的審核都是一樣的。這些知識(shí)闡明了一個(gè)給定的定位夾具的能力和裝配任務(wù)。換句話說,它表示在其相關(guān)流程中一套夾具是否能夠滿足公差要求。
2.3夾具理論比較
為了用于多種生產(chǎn)裝置和組裝應(yīng)用,在不同的公司也有大量不同形狀和設(shè)計(jì)的夾具。這些夾具中的某一些的形式都是標(biāo)準(zhǔn)形式,然而另一些是經(jīng)過專門設(shè)計(jì)和制造的特殊零部件。后者可以說是建立在產(chǎn)品的復(fù)雜性和大規(guī)模的基礎(chǔ)上的,所以可能會(huì)是非常昂貴的[9]。
無論成本和目的如何,制造和組裝過程都可以完成,要么不使用夾具,要么用固定幀夾具或用可重構(gòu)或柔性夾具。表2對(duì)它們的典型應(yīng)用的這些方法做出了比較。
固定框夾具通常用于重型應(yīng)用上,它們更適合于應(yīng)用在能夠減輕花費(fèi)開銷的大量產(chǎn)品上。
對(duì)于制造業(yè)和大型組裝及復(fù)雜產(chǎn)品來說,柔性夾具的應(yīng)用有很多好處。特別是在研究和發(fā)展工作中,以及低容量產(chǎn)品的情況下,制造柔性夾具和夾具可能會(huì)是非常有益的。除了在時(shí)間和金錢上使利益均衡外,柔性夾具還會(huì)有一個(gè)更加靈活的設(shè)計(jì)思路。由于在夾具的制造和裝配過程中,會(huì)直接和經(jīng)常改變夾具的拓?fù)涑杀?。與傳統(tǒng)夾具相比較,這種類型的柔性夾具的可重用性和可重構(gòu)性是一個(gè)主要的優(yōu)點(diǎn)。這一點(diǎn)尤為重要,因?yàn)樗诰G色制造方面符合行業(yè)的發(fā)展方向,通過回收使用系統(tǒng)的組成部件,為相關(guān)項(xiàng)目的工裝費(fèi)用降低了項(xiàng)目成本。
表2.1 用于驗(yàn)證夾具大量的例子、便攜式測(cè)量?jī)x器
儀器
輔助部件
測(cè)量類型
接觸式 非接觸式
圖像
激光跟蹤儀
賽立信探頭
是
T型探頭
是
激光雷達(dá)
球形目標(biāo)
是
攝影
目標(biāo)
是
光投影
是
關(guān)節(jié)臂
三坐標(biāo)測(cè)量機(jī)
基于激光掃描頭
是
接觸探頭
是
2.4 柔性夾具的安裝
本節(jié)中描述的夾具在安裝過程中需要考慮一些問題。夾具元件安裝在合適位置可以說是一種挑戰(zhàn),尤其是當(dāng)定位公差比較小時(shí),柔性夾具也應(yīng)當(dāng)被監(jiān)測(cè)以便于開發(fā)和與傳統(tǒng)夾具相比較它們的剛性。
給出了一個(gè)通用的描述階段根據(jù)初步夾具安裝在仿真軟件環(huán)境和利用一些尺寸為5m×4m×3m的大尺寸夾具的實(shí)際實(shí)驗(yàn)結(jié)果來測(cè)量指令階段。這是不論這個(gè)夾具是否是第一次安裝在夾具中還是對(duì)已經(jīng)存在的夾具只做外形上的更換,其都是為了定位不同的零部件。
根據(jù)其復(fù)雜性,一種典型的大尺寸夾具具有三至五個(gè)結(jié)構(gòu)。通常除了有一個(gè)主框架之外,在每一個(gè)級(jí)別的基本水平,也可以由一個(gè)或多個(gè)結(jié)構(gòu)。這些結(jié)構(gòu)用來作為參考以便于作為夾具基準(zhǔn)來定位。在一個(gè)自動(dòng)化固定的平臺(tái)上,機(jī)器系統(tǒng)會(huì)進(jìn)行多項(xiàng)任務(wù),比如定位、加工和進(jìn)行裝配。因此機(jī)器人的工作基準(zhǔn)與夾具的工作框架相聯(lián)系。仔細(xì)考慮夾具的綜合數(shù)據(jù),會(huì)確保后續(xù)安裝達(dá)到預(yù)期的公差要求。
2.4.1 測(cè)試輔助柔性夾具的安裝
柔性夾具的安裝在第一次進(jìn)行模擬仿真時(shí)有幾個(gè)安裝階段。使用模擬演習(xí),在這個(gè)工程中可以減少一些潛在的錯(cuò)誤和返工。測(cè)量輔助安裝過程是類似的跟蹤對(duì)象位置的過程,是常見的大尺寸組件用到的。夾具的組件先用這種方法使其大致位置公差在1mm以內(nèi),然后當(dāng)所有的夾具組件被放到所設(shè)計(jì)的位置時(shí),在0.1mm至0.15mm公差內(nèi),它們可以使用適當(dāng)?shù)呐ぞ厥站o。典型的計(jì)量協(xié)助柔性夾具安裝階段如下:
在出廠時(shí)設(shè)置初試參考結(jié)構(gòu);
測(cè)量初始參照系;
安裝基地或其位置的主框架;
安裝脫機(jī)內(nèi)結(jié)構(gòu);
安裝控股和定位;
在內(nèi)框和主框架位置安裝鉗、套管和皮卡。
底座上安裝內(nèi)框;
重點(diǎn)定位元件的精細(xì)調(diào)整和緊固;
核查參照系和夾具;
對(duì)于夾具關(guān)鍵位置的服務(wù)監(jiān)測(cè)。
這些階段是從無到有夾具的完整安裝。更不用說,在設(shè)計(jì)變化略有變化的情況下,一些下面的操作將被忽略。
表2.2 不同夾具理念之間簡(jiǎn)明的比較
典型特征
固定框架
柔性夾具
夾具
應(yīng)用
大批量產(chǎn)品
小批量產(chǎn)品
樣機(jī)
優(yōu)點(diǎn)
唯一性
可重復(fù)性
可重構(gòu)性
成本效益
耐用性
非常高
高
低
剛度
非常高
剛性不確定
低
缺點(diǎn)
重量
重
中
低
可移植性
不可移植
難以在每一個(gè)安裝中定位
難以進(jìn)行
成本
非常高
中等
低
生產(chǎn)時(shí)間
長(zhǎng)
中等
短
2.4.2 柔性夾具的安裝
柔性夾具安裝過程中采取了以下階段:
安裝夾具的主框架;
移動(dòng)單元和子系統(tǒng)組裝;
夾具內(nèi)框架在夾具裝配中的安裝;
皮卡和夾具的裝配。
主框架通常是夾具的骨干。因此,它一般不會(huì)改變外形,和內(nèi)框架及較小的元素如襯套、皮卡和夾具一樣具有規(guī)律性。慎重考慮制造過程可以減少夾具元件較大元素的重新排列,也會(huì)更進(jìn)一步節(jié)約時(shí)間和成本。圖3顯示了三組不同活動(dòng)小組對(duì)于柔性夾具的安裝過程。在這個(gè)過程中,假定夾具的標(biāo)準(zhǔn)件是從可供選擇的現(xiàn)成的部件和組件中選出來的,然后提前在大量的物理安裝測(cè)試和調(diào)試時(shí)以降低測(cè)量不確定度來進(jìn)行一次夾具安裝。一旦達(dá)到可接受水平的不確定性的物理安裝才能進(jìn)行。
圖2.3 柔性夾具的測(cè)量輔助安裝程序
在夾具安裝過程中,它可能需要用到多個(gè)測(cè)量系統(tǒng)或用到包括一套完整夾具安裝關(guān)鍵點(diǎn)的測(cè)量系統(tǒng)。這應(yīng)該包括在夾具維修期間放在工廠的地板和墻壁上的穩(wěn)定性及漂移檢查的目標(biāo)參考點(diǎn)。
在夾具上定位的關(guān)鍵點(diǎn)、測(cè)量?jī)x器的不確定性應(yīng)該予以考慮。作為一個(gè)經(jīng)驗(yàn)法則,每個(gè)夾具關(guān)鍵位置的定位的準(zhǔn)確性應(yīng)該是在10倍,甚至比所需的耐受性更好。換句話說,如果組件公差指定至0.1mm,則夾具定位精度至少應(yīng)為0.01mm。
柔性夾具安裝的最佳做法如下:
一個(gè)工廠的墻壁和地板上的初始參考點(diǎn)的位置是首選,以減少測(cè)量的不確定性;
應(yīng)驗(yàn)證該儀器所在位置上經(jīng)常使用初始參考點(diǎn)的基地;
在每個(gè)夾具的大節(jié)上,為更好地具有跟蹤和可重復(fù)性,可以附加多個(gè)球式反射跟蹤系統(tǒng);
夾具大型組件有關(guān)于彎曲或扭曲的測(cè)量應(yīng)集中在角梁的中央部分,以減少定位誤差;
內(nèi)框架參考點(diǎn)應(yīng)選擇盡可能遠(yuǎn)的創(chuàng)建框的坐標(biāo)系統(tǒng)。這可能會(huì)導(dǎo)致在內(nèi)框坐標(biāo)系時(shí)的較小的不確定性。
3.不確定性
由于評(píng)估的結(jié)果旨在對(duì)于所描述物體真正價(jià)值范圍內(nèi)的評(píng)估定位,則不確定性被定義為膠[8]。這里的不確定性來自兩方面的審查,首先是與測(cè)量過程中有關(guān)的,其次是與夾具定位的不確定性有關(guān)。測(cè)量不確定性的一些因素,如灰塵、重力、溫度、氣壓、濕度、測(cè)量?jī)x器和相關(guān)軟件中的系統(tǒng)誤差、操作人員的技能、接觸探針或球式反射跟蹤儀。基于膠[8]的定義,測(cè)量結(jié)果應(yīng)伴隨著它的不確定性說明,這些錯(cuò)誤詳細(xì)來源的討論超出了本文的范圍。已經(jīng)有多項(xiàng)研究來建立真正的不確定性的一些測(cè)量?jī)x器[10、11]。
夾具關(guān)鍵點(diǎn)的測(cè)量結(jié)果應(yīng)該包括相關(guān)的置信水平。除了最初的不確定性上升的測(cè)量?jī)x器,夾具的不確定性還有其他方面的影響。夾具框架方面的應(yīng)用由于產(chǎn)品重量以及制造工藝過程在夾具框架中能創(chuàng)建一些彈性變形。夾具有了集成化、自動(dòng)化和移動(dòng)部分,是這個(gè)問題變得更加復(fù)雜。
仔細(xì)考慮夾具設(shè)計(jì)階段不確定性的來源可以在一個(gè)給定的情況下減少過度使用公差預(yù)算的風(fēng)險(xiǎn)。夾具的精度和夾具的成本之間有著直接的關(guān)系。然而,整體的成本也應(yīng)該被考慮在內(nèi)。高數(shù)額的零部件有更長(zhǎng)的使用壽命。換句話說,質(zhì)量特征接近平均值是,在使用過程中會(huì)很少失效。朝六個(gè)方向靠近在安裝時(shí)是很必要的,然后是在高精度夾具和敏感部位上的可重構(gòu)、柔性夾具及夾具的監(jiān)測(cè)。
4.討論
柔性夾具適用于組裝和在加工部分有不同的設(shè)計(jì)和幾何參數(shù)。尤其是當(dāng)這些部件之間的設(shè)計(jì)變化小時(shí),這種類型的夾具被證明是具有成本效益和快速的解決方案,這是因?yàn)樗赡軙?huì)通過夾具重新配置到一個(gè)新的產(chǎn)品或組件的變種上。然而,當(dāng)所需的零件盒裝配的設(shè)計(jì)完全不同時(shí),可能需要不同尺寸夾具組件的完整地重排,因此,在設(shè)計(jì)一個(gè)新的零件和重組夾具的拓?fù)浣Y(jié)構(gòu)時(shí)應(yīng)該考慮到要便于減少夾具的安裝和重新配置的時(shí)間以及成本,并最大限度的重用現(xiàn)在的組件在當(dāng)前的裝配中。
一個(gè)柔性夾具有許多種裝配方式,是由于其靈活性。在正確的安裝順序下選擇合適的組件,可以最大限度的節(jié)約成本和時(shí)間。本次選擇的過程中應(yīng)該對(duì)未來產(chǎn)品的夾具的潛在的重用予以考慮。在產(chǎn)品不斷變化的情況下,計(jì)劃和設(shè)計(jì)夾具框架是很重要的。使用定制的夾具、緊固件、軸套和其他夾具元件都是降低成本的關(guān)鍵問題。
仿真軟件和工具的廣泛使用,可以減少返工和浪費(fèi)夾具材料相關(guān)的成本。例如測(cè)量?jī)x器,其目標(biāo)點(diǎn)之間的視線檢查就會(huì)使用這些軟件來輔助。圖4顯示了柔性夾具安裝在測(cè)量仿真軟件中的第一個(gè)階段。由于夾具正在興建的模擬的效益越
來越明顯,因此它可以突出儀器與目標(biāo)測(cè)量點(diǎn)的水平視線的問題和不確定性。
由于關(guān)于夾具操作中重量和力使夾具元件的電位漂移和變形,則可以提前在仿真中分析以及在購買夾具元件方面的財(cái)政。更重要的是,這種工具允許更好的裝配和制造等操作,因?yàn)樗鼈兡芴崆胺治龀鰥A具的長(zhǎng)處和弱點(diǎn),揭示其物理設(shè)置。
選擇合適的測(cè)量?jī)x器最重要的是要協(xié)助夾具安裝的的計(jì)量。一個(gè)連貫的計(jì)量系統(tǒng),其測(cè)量結(jié)果的不確定性能夠決定夾具的不確定性,也暴露了夾具和是否符合一個(gè)給定的公差范圍內(nèi)所需任務(wù)的能力。
圖4.1 測(cè)量輔助夾具安裝的模擬過程
由于關(guān)于夾具操作中重量和力使夾具元件的電位漂移和變形,則可以提前在仿真中分析以及在購買夾具元件方面的財(cái)政。更重要的是,這種工具允許更好的裝配和制造等操作,因?yàn)樗鼈兡芴崆胺治龀鰥A具的長(zhǎng)處和弱點(diǎn),揭示其物理設(shè)置。
選擇合適的測(cè)量?jī)x器最重要的是要協(xié)助夾具安裝的的計(jì)量。一個(gè)連貫的計(jì)量系統(tǒng),其測(cè)量結(jié)果的不確定性能夠決定夾具的不確定性,也暴露了夾具和是否符合一個(gè)給定的公差范圍內(nèi)所需任務(wù)的能力。
總結(jié)
零件和裝配體應(yīng)該以盡量減少夾具成本的方式來設(shè)計(jì),以滿足使用標(biāo)準(zhǔn)組件。如果在夾具更新至下一產(chǎn)品時(shí)提前思考,則其速度和成本可能會(huì)增加。在夾具和固定裝置的設(shè)計(jì)上有強(qiáng)大的總成本、碳足跡及其可持續(xù)性。它往往要求生產(chǎn)出只有極少數(shù)的典型設(shè)計(jì)或產(chǎn)品,子系統(tǒng)或組件,以滿足產(chǎn)品的變化和客戶的需求。對(duì)于大型產(chǎn)品的幾何尺寸超出幾米夾具的可能會(huì)造成重大的開銷。此外,一旦所需的零部件倍制造出來,這些夾具則會(huì)變得多余。常規(guī)回收多余夾具是不經(jīng)濟(jì)的。因此,找到增加夾具的靈活性才是所需求的方法。
柔性夾具和夾具的概念已存于二十余年。然而它們的潛能還沒有真正發(fā)揮,是由于其精度可可重復(fù)性的不確定性。高精度計(jì)量系統(tǒng)現(xiàn)在能夠用來對(duì)夾具進(jìn)行初始安裝和服務(wù)。然后使用該系統(tǒng)有可能重新設(shè)定夾具元素使其精確到一個(gè)新的拓?fù)浣Y(jié)構(gòu),以便于定位不同幾何位置的組件,允許幾次使用夾具。
本文提出了一種對(duì)于大規(guī)模柔性夾具及夾具初始定位和安裝的通用的算法。計(jì)量輔助夾具安裝的新概念被證明對(duì)復(fù)雜的設(shè)置和夾具的安裝是有益的。當(dāng)完全裝配好時(shí),夾具的穩(wěn)定性可以通過慎重考慮和選擇夾具幾何位置上的關(guān)鍵點(diǎn)來予以保證。這種方法將應(yīng)用于大尺寸元件和產(chǎn)品的制造以及裝配件,尤其是應(yīng)用于航空航天和發(fā)電工業(yè)中。
G. Seliger et al. (eds.), Advances in Sustainable Manufacturing: Proceedings of the 8th Global Conference 149 on Sustainable Manufacturing, DOI 10.1007/978-3-642-20183-7_22, Springer-Verlag Berlin Heidelberg 2011 Methodology for High Accuracy Installation of Sustainable Jigs and Fixtures J. Jamshidi, P.G. Maropoulos Department of Mechanical Engineering, University of Bath, UK Abstract The ability to accurately measure the components of jigs and fixtures during their installation determines the state of their precision, especially for large size products and applications. This matter is crucial in mass customisation where small batches of products and components with high variety in design are manufactured. Product quality should be in harmony with rapid changeover philosophy as compromising quality for speed is not forgivable for sensitive components and assemblies such as those seen in the aerospace industry. It is necessary for the installation of the jigs and fixtures to be highly accurate in order to minimise the use of tolerance budget due to variations in jigs and fixture positioning. Major overhead costs for jigs and fixtures particularly in the aerospace industry led to the development of the concept of flexible and reconfigurable jigs and fixtures. Reusability of reconfigurable jigs and fixtures makes them attractive for sustainable solutions as their components can be reused for several variant of a product or assembly. The main drawbacks of this type of jigs and fixtures have been their poor accuracy and reliability. In this paper accurate positioning of the key components of sustainable jigs and fixtures is investigated. The factors affecting the performance of the jigs and fixtures are reviewed from the installation stage. The paper introduces a methodology for minimising uncertainties in positioning of the holds and clamps for flexible jigs and fixtures. Keywords: Sustainable Jig, Jig installation, Calibration Uncertainty, Jig Monitoring, Metrology, Reusable Jig 1 INTRODUCTION Factors such as quality and reliability have long converted to implicit characteristics of the new products. Recent market trends have forced manufacturing industries to move towards mass customisation in their products and service range. Increased variation in the design of new products is followed by a second wave of variation with higher amplitude at subassemblies and component level. State of the art manufacturing systems and technologies have provided more flexibility, enabling designers to think more freely. For instance new large volume measurement systems, developed in the past few years, are capable of measuring several decametre distances. Such technologies facilitate the verification of large size components that used to be manufactured from several assembled components. The manufacturing of large size products requires specialist jigs and fixtures in order for their components to be held in the desired orientation during build and assembly. This requires major overhead cost that can only be justified by mass production in some cases or otherwise the cost of finished products can be very high. This issue contradicts with the market trends where customers are constantly looking for higher value for their money. In a typical product the variation in the product creates a more sustainable business as it can fulfil the needs of a relatively larger market. Flexible and reconfigurable jigs and fixture that can be formed in different shapes to support different variation of products is a key solution for the above challenges. The concept of flexible jig existed for several years in the research domain 1. However, they are not fully utilised to a great extent in real production facilities especially for large size product manufacturers, such as aerospace. This is due to the challenges related to their initial installation, poor calibration, and repeatability that often exceed the tolerance requirement. The manufacturing of these jigs and fixtures from high quality key components as well as their integration with large volume metrology systems can reduce the above limitations. This paper covers metrology issues related to the installation and calibration of flexible jigs and fixtures as well as their monitoring during service. 2 RELATED WORK 2.1 Manufacturing and assembly of large scale parts Typically prior to precision manufacturing of mechanical parts it is essential to move the raw material to the machine bench, proceed with rough cutting then fine alignment and clamping. At this stage the part is ready for machining of its high precision key features. However, this is not always possible for large size and/or heavy components. Large scale products refer to those with components that are not economically possible to handle or move around in the factory for fabrication and assembly purposes 2. The manufacturing and assembly processes of these parts encompass movement of the machines and systems to the desired location and orientation with respect to these parts. Such parts are normally held in their positions using large size jigs and fixtures. If these parts are produced in small batch sizes that is the case for aerospace industries, high overhead cost per product will occur. There have been many attempts to design and manufacture jigs and fixtures so that they can hold a number of variants of components 3, 4. However, this approach is not feasible for parts with sensitive or key features due to their high accuracy requirements. J. Jamshidi, P.G. Maropoulos 150 Adjustable, reconfigurable jigs and fixtures produce lower repeatability over time compared to fixed ones. Fixed jigs have permanent topology achieved through their permanent joints that are welded or riveted. Mechanical failure of these jigs and fixtures for example due to fatigue and plastic deformation is a main cause of terminating their service and sending them for recycling. With small batch manufacturing requirements it is now common to retire a conforming jig as their service life depends on the life of products. In other words soon after the cease of manufacturing a parts variant, the associated jigs and fixtures become redundant. Even if the jigs are still in working order, they have to be scrapped and sent for recycling. This method brings the burden of high energy consumption for recycling. Even for the fixed jigs and fixtures the drift in the large size parts and jig can affect the accuracy of a large size assembly 5. Several methods for analysing jig rigidity have been developed 6 to evaluate the impact of vibration on large size jigs. In any case a more sustainable manufacturing can only be achieved by alternative solutions. Figure 1: Typical components of large scale jig (image courtesy of Electroimpact http:/ Extensive lead time to manufacture is another major drawback for fixed jigs and fixtures. These jigs should be ordered well in advance of any manufacturing processes. This can create additional complexity in production planning and product time to market. Regardless of their type, large scale jigs have a number of common elements including one main frame, one or a number of inner frames, potentially one or a number of moving mechanisms, and smaller components such as clamps, bushings, pickups and adjustable screws (Figure 1). 2.2 Flexible jigs and fixtures The concept of flexible jigs and fixtures is developed for increased sustainability, rapid changeover as well as low cost. It is now possible to use off the shelf modules and clamps for jigs and fixtures design and assembly. Depending on the requirement only a handful of specialised components for the jigs and fixtures might be needed to be custom designed and manufactured. In this concept the majority of bulk components, joints at the attachments are used in for a specific application. Once the product design variant is fully manufactured it is then possible to disassemble the above components and reassemble them in a new topology to suite the next design variant. This cycle can be repeated over a large number of times resulting in reduced overhead cost for jigs and fixtures. Needless to mention the other factors such as disassembly time, resetting time, operators time should be considered for evaluating the real cost benefit of using this type of jigs and fixtures. This approach best reduces the cost of jigs and fixtures for the assembly and component ranges that are fairly close in design. Depending on the level of variations in the components and the type of work required on each a different percentage of the flexible jigs need to be rearranged. This matter is crucial to be considered at design stage in order to increase the benefit of using this type of jigs and fixtures. For example, when possible, the location and 3D positioning of pickups and clamps on different variants of the component or even totally different parts should be in close proximity to increase compatibility and inter-changeability of sub-systems of jigs and fixtures. Having a collection of the key components of the jigs can guarantee the availability of the desired jigs in a short time. In addition to this the storage of the jigs required less space as it is possible to dismantle all the modules that are typically in the form of scaffolding and place them next to each other. Flexible jigs are currently utilised in some of the automotive companies (Figure 2) as their accuracy level is sufficient for this sector. Despite the above benefits there are Clamp Main frame Inner frame Component Adjustable holds Moving mechanisms Methodology for High Accuracy Installation of Sustainable Jigs and Fixtures 151not many flexible jigs in operation in large size manufacturing facilities such as aerospace factories. Accuracy and uncertainty of positioning pins, repeatability of the clamps and drift of the jig structure are all contributing to the fact that these jigs cannot meet the tolerance requirements of the power generation and aerospace industries. These jigs have high potentials for utilisation in the above industries once their accuracy problems are resolved. Figure 2: Fixture with reconfigurable components for automotive industry (image courtesy of Witte http:/www.horst-witte.de/en/) There has been a number of new developments in large volume metrology systems and technologies. Modern laser based metrology systems and technologies are now capable of measuring large size products up to several decametres with acceptable accuracy. These systems can be used to accurately position mountings of the key components of the jig during its installation and initial setup. The installation of jigs and fixtures typically starts form its base or main frame then large components and gradually to the smaller components such as pickups and clamps. Metrology systems can be used for the installation of flexible jig main frame and its inner frames to guarantee the correct positioning of each and every component. Table 1 shows a few of these large scale measurement systems. For technological review of these systems see 7. Laser tracker systems capable of measuring reference points, are among the most suitable measurement systems for this purpose. The instrument tracks a Spherically Mounted Retroreflector (SMR) target the position of which can be registered in three dimensional space. SMR can be contacted directly with the target object to provide geometrical positional information or can be used within a mechanically repeatable SMR nest known as Laser tracker target or in short target from this point on. Laser trackers like any other measurement instrument have a level of uncertainty that need to be accounted for during the jig installation process. Also the line of sight issues between the laser tracker and its target point should be considered and if necessary multiple tracker positions should be used. In real measurement activity the result must be accompanied with a statement of uncertainty. Such statement characterises the dispersion of the values that are reasonably attributed to the measurand 8. This issue is the same for the installation and later verification of any jig or fixture. This knowledge clarifies the jig capability of a given positioning and assembly task. In other word it indicates if a jig can meet the tolerance requirements for its related processes. 2.3 Comparison of jig philosophies There are a large number of different shape and design jigs and fixtures in different companies for various manufacturing and assembly applications. Some of these jigs and fixtures are readily available in standard forms, while some are designed and manufactured specific to particular parts and tasks. The latter can be very expensive based on the complexity and scale of the products 9. Regardless of cost and purpose a manufacturing or assembly process can be performed using with no jig, with fixed frame jigs, or with reconfigurable or flexible jigs. Table 2 provides a comparison of these methods with their typical applications. Fixed frame jigs are typically for heavy duty applications. They are more suitable for applications with a large number of products that can relax the overhead cost of the jig. There are several advantages in the application of flexible jigs and fixtures for the manufacturing and assembly of large and complex products. In particular for research and development work, as well as for cases where low volume products are manufactured flexible jig and fixture can be very beneficial. In addition to time and money saving benefits the possibility of having a flexible jig gives more freedom to the design, manufacturing and assembly processes due to the low direct and recurrent cost of changing the overall topology of the jig. Reconfigurability and reusability of flexible jig is a main Clamp Main frame Inner frame Component J. Jamshidi, P.G. Maropoulos 152 advantage for this type of jig compared to conventional jigs. This is particularly important as it is in line with the industry direction in terms of green manufacturing by recycling components from a used system, reducing project costs with regards to expenses for tooling of associated items. Table 1: Examples of large volume/portable measurement instruments for jig verification Measurement type Instrument Auxiliary components Contact Non-contact Image SMR probe ? Laser Tracker T-probe ? Laser Radar Spherical targets ? Targets ? Photogrammetry Light projection ? Laser based scanning head ? Articulated Arm CMM Contact probe ? 3 FLEXIBLE JIG INSTALLATION The issues and concerns that need to be considered in the jig installation procedure are described in this section. The installation of the jig components in the right position can be a challenging especially when the positioning tolerances are tights. Flexible jigs should also be monitored in order to exploit and compare their rigidity with that of the conventional ones. Stage by stage measurement instruction for the jig installation based on the results of an initial jig setup in the simulation software environment and practical experiment of a large size jig with dimensions of 5m x 4m x3m is given in a generic description. This is regardless of whether the jig is in first time installation or it is a change of an existing jig topology into a new shape, for holding a different component. Depending on the complexity a typical large size jig has between three to five levels of frames. Apart from the base level with normally one main frame, at each level there can be one or several frames. These frames are interrelated with reference to the jig datum in order to facilitate the positioning and functionality required. In an automated, fixed platform, robotic systems carry out several tasks such as part positioning, machining and assembly. The robot working datum therefore is linked with the working frame of the jig. Careful consideration of jig datuming strategy and its subsequent installation can secure achieving the desired tolerance. 3.1 Measurement assisted flexible jig installation There are several stages for the installation of flexible jigs that can be carried out in first simulation and then real world. The use of simulation exercise can reduce the number of potential errors and rework during this process. The process of measurement assisted installation is similar to tracking objects to position that is common for large size assemblies. In this approach the components of the jig are roughly positioned, within 1mm tolerance from the target position, at first. Then when all of the jig components are attached into their designated positions, within 0.1mm to 0.15mm tolerance, they are tightened using the appropriate torque. The typical stages of metrology assisted flexible jig installation are given below: 1. setting initial reference frames in the factory 2. measurement of initial reference frame 3. installation of base or main frame in its position 4. installation of inner frames offline 5. installation of holding and positioning brackets 6. installation of clamps, bushings and pickups in their rough position on inner frames and main frame 7. installation of inner frame on the base frame 8. fine adjustment and fastening of key locating components 9. verification of reference frames and clamps 10. in service monitoring of key positions on the jig These stages are related to the complete installation of the jig from the scratch. Needless to mention that in case of slight Methodology for High Accuracy Installation of Sustainable Jigs and Fixtures 153change in design variation some of the following operations will be omitted. Table 2: A brief comparison between different jig philosophies Typical characteristic Fixed frame Flexible jig Jig-less Application Large volume production Low volume production Prototyping Uniqueness Repeatable Reconfigurable Cost effectiveness Durability Very high High Low Pros Rigidity Very high Uncertainty rigidity Low Weight Heavy Medium Low Portability Non-portable Difficult component positioning in each setup Difficult to program Cost Very high Medium Low Cons Manufacturing time Long Medium Short 3.2 Algorithm for flexible jig installation The installation processes for flexible jigs take the following main stages: 1. the installation of main frame of the jig 2. the assembly of moving units and sub-systems 3. the installation of the jig inner frames on the jig assembly 4. the assembly of pickups and clamps on the jig. The main frame is the backbone of the jig that is typically fixed for a large number of jig topology and design variations. Therefore it does not change in shape as regularly as the inner frame or the smaller elements of the jig such as bushings, pickups and clamps. Careful consideration of the manufacturing process can reduce the necessity of rearranging larger elements of the jig components resulting in further time and money saving. Figure 3 in three separate groups of activities shows the processes of flexible jig installation. In this process it is assumed that the standard parts of the jig are selected from the available, off the shelf sections and components. Then in advance of the physical installation a number of tests and trials are carried out to plan the jig installation in such a way that the uncertainty of measurement is reduced. Once the acceptable level of uncertainty is achieved the physical installation can take place. Figure 3: Measurement assisted installation procedure for flexible jig J. Jamshidi, P.G. Maropoulos 154 In jig installation process it might be required to use multiple measurement system or a measurement system from several locations to cover the complete set of key points for jig installation. This should include the auxiliary target reference points that are placed on the factory floor and wall for stability and drift check during the jig service. During the localisation of the key points on the jig the uncertainty of the measurement instrument shoul
收藏