橋式起重機框架運行影響的統(tǒng)計模型外文文獻翻譯、中英文翻譯、外文翻譯
橋式起重機框架運行影響的統(tǒng)計模型外文文獻翻譯、中英文翻譯、外文翻譯,橋式起重機,框架,運行,影響,統(tǒng)計,模型,外文,文獻,翻譯,中英文
橋式起重機框架運行影響的統(tǒng)計模型
關(guān)鍵詞:橋式起重機:橫向位移
摘要:海關(guān)聯(lián)盟的技術(shù)規(guī)定要求在橋式起重機的設(shè)計階段實施風(fēng)險分析。為了實現(xiàn)風(fēng)險的隨機計算,我們開發(fā)了統(tǒng)計模型,使我們能夠在各種組合中模擬可能對橋式起重機金屬結(jié)構(gòu)的操作影響。該統(tǒng)計模型在軟件產(chǎn)品自動計算橋式起重機故障發(fā)生風(fēng)險中得到了實際應(yīng)用。
1. 引言
起重機是一種間歇動作的機械,其工作特點具有周期性,在每一個工作循環(huán)中,他的主要機構(gòu)作一次正向及反向運動,每次循環(huán)包括物品的裝載及卸載,搬運物品的行程和卸載后的空鉤回程,前后兩次裝卸之間還包括輔助準(zhǔn)備時間在內(nèi)的短暫停歇。
在工作循環(huán)中,起重機各機構(gòu)一般不同時開動,而是根據(jù)工作需要彼此協(xié)同工作的,但在一個循環(huán)中各機構(gòu)都有自己的動作延續(xù)時間,此外,即使在開動階段,機構(gòu)的負(fù)載情況有帶載和空載之分,即使是帶載,載荷大小也有變化,另外操作熟練程度對機構(gòu)的受力情況也有影響,操作不平穩(wěn)會使構(gòu)件帶來沖擊載荷,加劇疲勞,磨損或發(fā)熱。嚴(yán)重的可能導(dǎo)致事故,除上述工作條件外,還需考慮起重機的工作環(huán)境,如在高溫車間,酸堿車間,都會影響機械的強度,為了充分估計這些情況和避免產(chǎn)生意外的后果,在設(shè)計、選擇或效驗起重機以及選擇電動機和電器設(shè)備,必須從實際出發(fā),根據(jù)不同的工作情況,應(yīng)用不同的安全系數(shù)和許用應(yīng)力,為此,要把起重機械根據(jù)忙閑程度和負(fù)荷情況分為不同的工作類型,但起重機械是由各機構(gòu)組成的,起重機械在工作,也就是他的機構(gòu)在運行,因而必須考慮到各機構(gòu)的工作類型,由于這些機構(gòu)的用途不同,工作時間長短也不同,(例如起升機構(gòu)在裝卸物品時,其他機構(gòu)停歇不動),而且在工作過程中,各機構(gòu)運行速度和所受載荷業(yè)不同,所以在同一起重機械中,各機構(gòu)的運行速度和所受的載荷是不同的,因此,在設(shè)計計算各機構(gòu)的零部件時,應(yīng)根據(jù)零部件的工作類型分別進行,整體起重機械和金屬結(jié)構(gòu)的工作類型是根據(jù)主起升機構(gòu)決定的,而且于他屬于不同的同一種工作類型 。
起重機主要包括起升機構(gòu)、運行機構(gòu)、變幅機構(gòu)、回轉(zhuǎn)機構(gòu)和金屬結(jié)構(gòu)等。起升機構(gòu)是起重機的基本工作機構(gòu),大多是由吊掛系統(tǒng)和絞車組成,也有通過液壓系統(tǒng)升降重物的。運行機構(gòu)用以縱向水平運移重物或調(diào)整起重機的工作位置,一般是由電動機、減速器、制動器和車輪組成。變幅機構(gòu)只配備在臂架型起重機上,臂架仰起時幅度減小,俯下時幅度增大,分平衡變幅和非平衡變幅兩種?;剞D(zhuǎn)機構(gòu)用以使臂架回轉(zhuǎn),是由驅(qū)動裝置和回轉(zhuǎn)支承裝置組成。金屬結(jié)構(gòu)是起重機的骨架,主要承載件如橋架、臂架和門架可為箱形結(jié)構(gòu)或桁架結(jié)構(gòu),也可為腹板結(jié)構(gòu),有的可用型鋼作為支承梁[2]。
通用橋式起重機是各類產(chǎn)品和倉庫綜合[1]中最廣泛的貨物裝卸、運輸、倉庫工程機械化手段之一。根據(jù)《關(guān)稅同盟技術(shù)條例》第4條第7款TR CU010/2011,在設(shè)計通用橋式起重機時,有必要制定安全理由,包括作業(yè)風(fēng)險分析[2-5]。
橋式起重機的資源、成本和運行安全在很大程度上取決于金屬結(jié)構(gòu)。反過來,橋式起重機金屬結(jié)構(gòu)的主要和最負(fù)責(zé)任的部分是橋梁的框架(一個或兩個主軌)。
因此,設(shè)計人員在如何開發(fā)這樣一種滿足耐久性、剛度、穩(wěn)定性、抗疲勞性條件、具有最佳金屬比量并對應(yīng)于所需失效風(fēng)險水平的起重機金屬結(jié)構(gòu)方面有著重要的任務(wù)。在提交的文件中,這個問題是在對起重機金屬結(jié)構(gòu)的操作影響進行統(tǒng)計建模的基礎(chǔ)上決定的,目的是估計各種金屬結(jié)構(gòu)變體的失效風(fēng)險,由設(shè)計者進行了分析。
2.材料和方法
進行橋式起重機失效風(fēng)險分析,需有統(tǒng)計數(shù)據(jù)。它們可以在設(shè)計的起重機的全面測試中或在對類似機器的監(jiān)督的基礎(chǔ)上收到。然而,在經(jīng)營生產(chǎn)條件下進行自然測試和收集有關(guān)經(jīng)營的統(tǒng)計數(shù)據(jù)是極其昂貴的,在某些情況下,這是絕對不可行的。對通用橋式起重機的運行進行統(tǒng)計建模,從而獲得其金屬結(jié)構(gòu)加載的所有必要數(shù)據(jù),是其出路。這些數(shù)據(jù)可以轉(zhuǎn)化為可靠性的定量和定性特征,并分別轉(zhuǎn)化為故障[6]的風(fēng)險。
為了獲得這些信息,本文采用了一種統(tǒng)計建模方法。統(tǒng)計建模是計算機建模的類型,允許人們考慮發(fā)生過程的隨機因素,并獲得建模對象的統(tǒng)計數(shù)據(jù)。
為此,有必要獲得有關(guān)建模對象的基本數(shù)據(jù)。這些通用橋式起重機的基本數(shù)據(jù)是承載能力、驅(qū)動機構(gòu)參數(shù)和定義性能負(fù)載的操作模式。
3.橋式起重機失效風(fēng)險分析
橋式起重機部件的性能負(fù)荷是隨機變量。啟動和制動設(shè)備的調(diào)整以及起重機操作人員的資格對性能負(fù)荷的分配有著至關(guān)重要的影響。為了用統(tǒng)計建模的方法來定義目前橋式起重機設(shè)計中的部分工作,有必要以運動方程的形式提出這種設(shè)計。
在圖1中,有一個通用橋式起重機加載穩(wěn)態(tài)建模算法的控制流程圖,該算法考慮了加載的動態(tài)分量。
通用橋式起重機運行穩(wěn)態(tài)建模的基本數(shù)據(jù)有:起重機裝載能力、飛行、車間維修地點的長度、起重的平均高度、起重機的底座、起重機執(zhí)行機構(gòu)的速度、貨物的平均捆扎和卸載時間、起重機部件的重量、建模時間。
橋式起重機的載荷范圍是根據(jù)一種操作方式來設(shè)定的。在起重和降低運費過程中,貨車在起重機橋梁上的位置取決于車間的維修設(shè)備的安排、生產(chǎn)周期的特點等。
通過對各作者所做研究的分析,可以得出結(jié)論,在每半座橋梁的起重和降低運費過程中,貨車的位置分布接近四分之一和四分之三飛行的對稱正態(tài)分布。
數(shù)學(xué)期望a的定義表達式和任意飛行Lk的橋式起重機貨車位置偏差σ的均方誤差將如下所示:
橋的左半部分:
al = 0.27 ? Lk , σl = 0.12 ? Lk ;
橋的右半部分:
ar = 0.66 ? Lk , σr = 0.1 ? Lk .
起重機吊裝運輸作業(yè)的查詢坐標(biāo)為x1,y1 和卸貨地點坐標(biāo)x2,y2 在每個建模周期中生成。因此,這些隨機變量的值被認(rèn)為是按照正態(tài)分布的。
通過一個建模周期后,查詢的最終坐標(biāo)等于初始坐標(biāo),循環(huán)重復(fù)。整個過程將繼續(xù)進行,直到計數(shù)器定時器等于預(yù)設(shè)值 tmod (建模時間)。
我們將使用以下公式計算操作執(zhí)行的時間:
-從初始點移動到調(diào)查點:
t1 = max(abs(x0 ? x1)/ vx, abs( y0 ? y1)/ vy ,
其中x0,y0為起重機初始位置的坐標(biāo),vx為裝載運輸移動速度;
2
開始吧
初步數(shù)據(jù)
輸入
所研究部分
的參數(shù)計算
貨物起降地
點的數(shù)據(jù)生成
研究部分的
應(yīng)力計算
是的
不
雷克
級別大于0.5
σ的循環(huán)選擇
局部計算
σeq
是的
不
N = N
I 0
金屬結(jié)構(gòu)失
效的風(fēng)險計算
結(jié)束
MEACS2016IOP出版公司
IOP Conf。系列:材料科學(xué)與工程177(2017)012053DOI:10.1088/1757-899X/177/1/012053
3
N +1i
承載因子
的計算
超過耐
久性極限
整體計算σeq
周期統(tǒng)計數(shù)據(jù)的累積
圖1 橋梁加載統(tǒng)計建模算法的控制流程圖
MEACS2016IOP出版公司
IOP Conf。系列:材料科學(xué)與工程177(2017)012053DOI:10.1088/1757-899X/177/1/012053
從調(diào)查點到最后一點:
t2 = max(abs(x1 ? x2 )/ vx, abs( y1 ? y2 )/ vy ;
提高和降低運費:
t3 = zav / vl ,
zav –提升的平均負(fù)載高度;vl –貨物起降的速度;一個運行周期的一般執(zhí)行時間為
tc = t1 + t2 + 2 ? t3 .
周期可通軌接頭數(shù)量為:
nj = abs(x0 / lr ? x1 / lr ) + abs((x0 + bk ) / lr ? x1 / lr )
+ abs(x1 / lr ? x2 / lr ) + abs((x1 + bк ) / lr ? x2 / lr ) ,
在那里lr起重機跑道的鋼軌長度。
這個值結(jié)合已知的貨車在起重機橋上的位置,將允許計算通過鋼軌接頭時的動態(tài)載荷。
在確定繩索裝載的尺寸時,要考慮到吊裝機構(gòu)的運行動態(tài)和通過鋼軌接頭時發(fā)生的載荷。
最危險的張力可能是由于主梁截面倒塌的可能性,這可以由主梁彎曲分析過程中已知的依賴關(guān)系來確定[7-10]。
4.結(jié)論
因此,所開發(fā)的起重機操作統(tǒng)計模型允許人們對操作載荷進行建模,并獲得關(guān)于起重機橋梁金屬結(jié)構(gòu)中操作應(yīng)力的數(shù)據(jù),以便隨后計算關(guān)于失效風(fēng)險的統(tǒng)計數(shù)據(jù)。該模型用于評估起重機在金屬建筑[11]局部區(qū)域彈塑性損傷積累方面的失效風(fēng)險。作者在軟件產(chǎn)品中實現(xiàn)了所提出的統(tǒng)計模型的實際實現(xiàn),使橋式起重機失效風(fēng)險的計算自動化。
參考資料
[1]Shadskii G V, Antsev V Yu and Koveshnikov V A 1989 Soviet Engineering Research 9 (6) 66
[2]Popov B E, Levin E A, Kotel'nikov V S and Lipatov A S 2005 Safety of Labor in the Ind. 433
[3]Korotkij V A, Simonov D I, Lipatov A S, Duvidovich D I and Molchanov A B 2004 Safety
of Labor in the Ind. 3 13
[4]Zaretskij A A, Korotkij A A, Lipatov A S, Mikushevich F E and Fedorov I G 2001 Safety of
Labor in the Ind. 10 61
[5]Sokolov S A 2016 Russ. Engin. Res. 36 10
[6]Pas'ko N I, Pushkin N M and Inozemtsev A N 2002 Automation and Modern Technologies 5 7
[7]Kazak S A 1997 Heavy-duty production 6 18
[8]Kazak S A 1994 Heavy-duty production 11-12 6
[9]Lagerev A V, Lagerev I A and Milto A A 2014 International Review on Modelling and
Simulations 7 (4) 644
[10]Lagerev A V, Lagerev I A and Milto A A 2015 International Review on Modelling and
Simulations 8 (2) 223
[11]Seliverstov G V, Sorokin P A and TolokonnikovA S 2004 Heavy-duty production114
[11]Seliverstov G V,Sorokin P A和TolokonnikovA S2004重型生產(chǎn)114
A statistical model of operational impacts on the framework of the bridge crane
Keywords: Gantry crane
Abstract :The technical regulations of the Customs Union demands implementation of the risk analysis of the bridge cranes operation at their design stage . The statistical model has been developed for performance of random calculations of risks, allowing us to model possible operational influences on the bridge crane metal structure in their various combination. The statistical model is practically actualized in the software product automated calculation of risks of failure occurrence of bridge cranes.
1. Introduction
Crane is a kind of intermittent action machinery, its working characteristics are periodic, in each working cycle, his main mechanism makes a forward and reverse motion, each cycle includes the loading and unloading of items, The journey of handling items and the return of empty hooks after unloading, and a brief rest including auxiliary preparation time between loading and unloading.
In the working cycle, the crane mechanisms generally do not start at the same time, but work together according to the work needs, but in a cycle each mechanism has its own action duration. In addition, even in the start-up stage, the load is divided into load and no load. In order to fully estimate these conditions and avoid accidental consequences, in order to design, select or test cranes and select motor and electrical equipment, it is necessary to apply different safety factors and allowable stress according to different working conditions. To this end, the lifting machinery should be divided into different types of work according to the degree of leisure and load, but the lifting machinery is composed of various agencies, the lifting machinery is working, that is, his mechanism is running, Therefore, it is necessary to take into account the types of work of each mechanism, because of their different uses and different working hours (for example, when lifting mechanisms load and unload items, other mechanisms do not stop), and in the course of work, the speed and load of each mechanism are different in the same lifting machinery. Therefore, the design and calculation of parts and components of each mechanism should be carried out according to the type of work of the parts and components. The working type of the whole lifting machinery and metal structure is determined by the main lifting mechanism and belongs to the same type of work.
Cranes mainly include lifting mechanism, operating mechanism, variable mechanism, swing mechanism and metal structure. Lifting mechanism is the basic working mechanism of crane, mostly composed of hanging system and winch, but also through the hydraulic system to lift heavy loads. The operating mechanism is used to move heavy loads vertically horizontally or to adjust the working position of the crane, generally consisting of an electric motor, a gearbox, a brake and a wheel. The amplitude mechanism is only equipped on the arm frame crane, the amplitude of the arm frame is reduced when it is lifted, the amplitude increases when the arm frame is lowered, and the sub-equilibrium amplitude and non-equilibrium amplitude are increased. The swing mechanism is used to swing the arm frame and is composed of a drive and a swing support device. The metal structure is the skeleton of the crane, the main bearing parts such as the bridge, arm frame and door frame can be box-shaped structure or truss structure, can also be a abdominal plate structure, some can be used steel as a support beam.
Bridge cranes of general-purpose are one of the most widespread means of mechanization of cargo handling, transport, warehouse works in various types of productions and warehouse complexes [1]. According to clause 7 of article 4 of the Technical Regulations of the Customs Union TR CU 010/2011, when designing bridge cranes of general-purpose, it is necessary to develop the safety justification including risk analysis of the operation [2-5].
The resource of the bridge crane, its cost and operation safety depend to a greater degree on a metal construction. In its turn, the main and most responsible part of the metal construction of the bridge crane is a framework of the bridge (one or two main rails).
Thus, the designer has a serious task on how to develop such a metal construction of the crane that meets conditions of durability, rigidity, stability, fatigue resistance, possesses an optimum specific quantity of metal and corresponds to the required failure risk level. In the submitted paper, this issue is decided on the basis of statistical modelling of operational influences on the crane metal structure for the purpose of an estimation of failure risks of various variants of metal structures, thrashed out by the designer.
2. Materials and methods
For carrying out the analysis of failure risk of the bridge crane, it is necessary to have statistical data. They can be received in the full-scale tests of the designed crane or on the basis of supervision over similar machines. However, carrying out natural tests and collecting statistical data on the operation under conditions of the operating production are extremely expensive, and, in certain cases, it can be absolutely impracticable. Statistical modeling of the operation of the bridge crane of general-purpose, by means of which it is possible to obtain all necessary data on loading of its metal construction, can be the way out. These data can be transformed into quantitative and qualitative characteristics of reliability and, respectively, risks of failure [6].
MEACS2016 IOP Publishing
IOP Conf. Series: Materials Science and Engineering 177 (2017) 012053 doi:10.1088/1757-899X/177/1/012053
To obtain this information, a method of statistical modeling has been used in the paper. Statistical modeling is the type of computer modeling allowing one to consider a random factor of the occurring process and to obtain statistical data on the modelled object.
For this purpose, it is necessary to have basic data about the modelled object. These basic data for the bridge crane of general-purpose are the loading capacity, parameters of driving mechanisms and an operating mode defining performance loadings.
3. Analysis of the failure risk of the bridge crane
Performance loadings for parts of the bridge crane are random variables. The adjustment of the starting and brake equipment as well as the qualification of the crane operator exert an essential influence on the distribution of performance loadings . For definition of the current efforts in parts of the bridge crane design by the method of statistical modeling, it is necessary to present this design in the form of the equations of the movement.
In figure 1, there is a control flow chart of an algorithm of steady-state modeling of loading of the bridge crane of general-purpose which considers dynamic components of loading.
Basic data for steady-state modeling of the operation of the bridge crane of general-purpose are: the crane loading capacity, the flight, the length of the serviced site ofthe shopfloor, the average height of load lifting, the base of the crane, speeds of executive mechanisms of the crane, the average time of strapping and unstrapping of freight, the weight of components of the crane, the modeling time.
The range of loadings of the bridge crane is set on the basis of an operating mode. The position of the cargo cart on the bridge of the crane during lifting and lowering of freight depends on the arrangement of the serviced equipment in the shopfloor, features of a production cycle, etc.
The analysis of the researches conducted by various authors allows drawing a conclusion that distribution of positions of the cargo cart during lifting and lowering of freight for each half of the bridge is close to symmetric normal distributions regarding one quarter and three quarters of flight.
Expressions for the definition of mathematical expectation a and the error of the mean square of deviation σ of the cargo cart position for the bridge crane of any flight Lk will look as follows:
– for the left half of the bridge:
al = 0.27 ? Lk , σl = 0.12 ? Lk ;
– for the right half of the bridge :
ar = 0.66 ? Lk , σr = 0.1 ? Lk .
Inquiry coordinates for the hoisting-and-transport operation by the crane are , and unloading place coordinates x2 , y2 are generated in each cycle of modeling. Thus, the values of these random variables are considered to be distributed according to the normal law.
After passing one cycle of modeling, final coordinates of inquiry are equated to initial ones and the cycle is repeated. The entire procedure will proceed until the counter timer is equal to preset value tmod (modeling time).
We will calculate the time of operations execution using the following formulas:
– movement from an initial point to an inquiry point:
t1 = max(abs(x0 ? x1)/ vx, abs( y0 ? y1)/ vy ,
where x0, y0 – coordina tes of the initial position of the crane; vx – сrane movement speed; vx – load carriage movement speed;
2
Start
Initial data
input
Parameters
calculation of the
section under study
Data generation of
freight lifting and a
lowering place
Stress calculation in
the section under
study
Yes
No
Overrunning the
durability limit
rk
Cycles choice with
the level of more
than 0.5 ?σ
Calculation oflocal
σeq
Yes
No
Accumulation
of statistic
data on the
cycles
N = N
i 0
Calculation of
global eq
Risk calculation of
the metal structure
failure
End
Calculation of
load-bearing
factors
MEACS2016 IOP Publishing
IOP Conf. Series: Materials Science and Engineering 177 (2017) 012053 doi:10.1088/1757-899X/177/1/012053
3
i
N +1
σ
Figure 1. The control flow chart of the algorithm of statistical modeling of loading of the bridge
crane .
– movement from an inquiry point to a final point:
t2 = max(abs(x1 ? x2 )/ vx, abs( y1 ? y2 )/ vy ;
– lifting and lowering of freight:
t3 = zav / vl ,
where zav – the average height of loads lifting; vl – speed of lifting and lowering of freight;
– general time of performance of one running cycle is
tc = t1 + t2 + 2 ? t3 .
The quantity of the passable rail joints for one cycle is
nj = abs(x0 / lr ? x1 / lr ) + abs((x0 + bk ) / lr ? x1 / lr )
+ abs(x1 / lr ? x2 / lr ) + abs((x1 + bк ) / lr ? x2 / lr ) ,
where lr – the length of a rail of a crane runway.
This value in combination with the known location of the cargo cart on the crane bridge will allow calculating dynamic loadings when passing rail joints.
Determination of the size of loading in ropes is carried out taking into account the dynamics of the operation of the hoisting mechanism and loads occurring when passing rail joints.
The most dangerous tension can arise because of the possibility ofthe collapse of the section of the main beam, which can be determined by known dependencies during bending analysis of the main beam [7-10].
4. Conclusion
Thus, the developed statistical model of the crane operation allows one to model operational loading and to obtain data on the operating stresses in a metal construction of the crane bridge for the subsequent calculation of statistical data on the failure risk. This model is used for assessment of the failure risk of cranes with regard to accumulation of elasto-plastic damages in local zones of metal constructions [11]. Authors have enabled the practical realization of the presented statistical model in the software product that allowed automating the calculation of failure risks of bridge cranes .
References
[1]Shadskii G V, Antsev V Yu and Koveshnikov V A 1989 Soviet Engineering Research 9 (6) 66
[2]Popov B E, Levin E A, Kotel'nikov V S and Lipatov A S 2005 Safety of Labor in the Ind. 433
[3]Korotkij V A, Simonov D I, Lipatov A S, Duvidovich D I and Molchanov A B 2004 Safety
of Labor in the Ind. 3 13
[4]Zaretskij A A, Korotkij A A, Lipatov A S, Mikushevich F E and Fedorov I G 2001 Safety of
Labor in the Ind. 10 61
[5]Sokolov S A 2016 Russ. Engin. Res. 36 10
[6]Pas'ko N I, Pushkin N M and Inozemtsev A N 2002 Automation and Modern Technologies 5 7
[7]Kazak S A 1997 Heavy-duty production 6 18
[8]Kazak S A 1994 Heavy-duty production 11-12 6
[9]Lagerev A V, Lagerev I A and Milto A A 2014 International Review on Modelling and
Simulations 7 (4) 644
[10]Lagerev A V, Lagerev I A and Milto A A 2015 International Review on Modelling and
Simulations 8 (2) 223
[11]Seliverstov G V, Sorokin P A and TolokonnikovA S 2004 Heavy-duty production114
[11]Seliverstov G V,Sorokin P A和TolokonnikovA S2004重型生產(chǎn)114
4
收藏