調(diào)查多錐角變體的標(biāo)準(zhǔn)錐截測試對五軸機(jī)床外文文獻(xiàn)翻譯、中英文翻譯、外文翻譯
調(diào)查多錐角變體的標(biāo)準(zhǔn)錐截測試對五軸機(jī)床外文文獻(xiàn)翻譯、中英文翻譯、外文翻譯,調(diào)查,多錐角,變體,標(biāo)準(zhǔn),測試,機(jī)床,外文,文獻(xiàn),翻譯,中英文
附錄 1 文獻(xiàn)翻譯
調(diào)查多錐角變體的標(biāo)準(zhǔn)錐截測試對五軸機(jī)床
域的 CNC(電腦數(shù)值控制)加工、位置和仿形精度都是極端重要的。此外,需要更高的精度和更復(fù)雜的自由表面減少了組件幾何公差和增加的需求更高的處理能力。五軸機(jī)床加工(或如果你喜歡)使這些表面主張的充分實(shí)現(xiàn)姿態(tài)控制的工具,同時(shí)也減少了安裝和生產(chǎn)時(shí)間。然而,識別和量化相關(guān)的錯(cuò)誤是一個(gè)挑戰(zhàn),往往耗費(fèi)時(shí)間,與完整的物理校正近乎不可能。本文的重點(diǎn)是錐截的重復(fù)性和功能驗(yàn)收測試在 2012 年標(biāo)準(zhǔn)草案,ISO 10791 7。這項(xiàng)工作建立在藝術(shù)的狀態(tài)和建議使用的人工制品標(biāo)準(zhǔn)錐截測試開發(fā)包括兩個(gè)或兩個(gè)以上的錐形表面。的解釋和調(diào)查多錐角人工制品,加工結(jié)果在森精 NMV1500,報(bào)告。結(jié)果表明錐截測試的重復(fù)性和潛在的診斷的好處使用多錐角人工制品。
選擇和同行評審的責(zé)任下的國際科學(xué)委員會(huì)第六屆 CIRP 國際會(huì)議上高性能切削。
1 介紹
無數(shù)的關(guān)鍵機(jī)械部件靠,高精度 3 d 表面功能。其中包括可以使醫(yī)療器械的生物相容性,為航空發(fā)動(dòng)機(jī)、氣動(dòng)組件和各種汽車零部件,從渦輪增壓器葉輪復(fù)雜齒輪[1]。此外,對更復(fù)雜的需求和更高的精度 3 d 表面只會(huì)隨著產(chǎn)品的發(fā)展,在許多工程領(lǐng)域,以滿足增加的功能和性能的要求。汽車行業(yè)的象征,可以猜測的案例研究汽車渦輪葉輪如圖 1 所示。應(yīng)該指出的是,業(yè)務(wù)流程鏈從計(jì)算機(jī)輔助設(shè)計(jì)(CAD) 五軸電腦數(shù)值控制(CNC)制造精度的影響最終的表面實(shí)現(xiàn)[2]。這是本研究的核心過程感興趣。
圖 1 顯示了一個(gè)汽車渦輪葉輪。之間存在強(qiáng)烈的影響的數(shù)學(xué)描述三維葉片表面和葉輪的運(yùn)作效率[4]。這些葉片通常是完全自由的,要求 5-axisCNC 加工,通過計(jì)算機(jī)輔助設(shè)計(jì)和制造(CAD / CAM -數(shù)控加工)。這些過程的準(zhǔn)確性,在 CAD / CAM 數(shù)控鏈,插入和生成復(fù)雜 3 d 表面,決定最終的幾何和完成質(zhì)量。
2 錐截
錐截(CF)測試概念源于 NAS(國家航空標(biāo)準(zhǔn))979 作為五軸機(jī)床的驗(yàn)收測試。在NAS979 然而,z 軸錐軸對齊到機(jī)器。的作品從 Bossoni[5],錐截科學(xué)提出的傾向。從這個(gè) ISO10791-7 技術(shù)委員會(huì)(TC39)包括斜錐及其配置值為 ISO / DIS 10791 - 2012。旨在評估產(chǎn)生的錐形面五軸仿形機(jī)床的性能當(dāng)所有軸同時(shí)操作。兩個(gè)加工特性給出一個(gè)平面和位置參考。測試配置如圖 2 所示。
生成的錐形面為形式,可以測量方向和位置相對于機(jī)參考功能。兩個(gè)標(biāo)準(zhǔn)錐配置詳細(xì)的標(biāo)準(zhǔn),與他們的傾向和頂點(diǎn)角度變化的參數(shù)。這些配置將在第二節(jié)詳細(xì)。從這個(gè)測試有許多好處,如下:
? 最小機(jī)器停機(jī)時(shí)間
? 可以檢測關(guān)鍵錯(cuò)誤
? 圓度測量精度對 CMM 測量成為可能
? 最小化減少部隊(duì)參與
? 完整的系統(tǒng)測試
? 快,因此熱運(yùn)動(dòng)并不影響結(jié)果。
2.1 錐截作為診斷工具
嚴(yán)格檢查的一些文獻(xiàn)基于錐截法,它是發(fā)現(xiàn)有很多 ofinteresting contributions.interesting 貢獻(xiàn)。格布哈特等人研究了工件定位的影響在四個(gè)不同的地點(diǎn)在一個(gè)森精 NMV5000 TTTRR 配置[6]。小錐循環(huán)結(jié)果之間還是有差異的。循環(huán)通過格布哈特受到增加報(bào)道的范圍線性軸和轉(zhuǎn)動(dòng)軸上的阿貝誤差影響性能。錐之間的小變化循環(huán)報(bào)道整個(gè)機(jī)器,顯示線性軸,至關(guān)重要的是,轉(zhuǎn)動(dòng)軸錯(cuò)誤是在 一個(gè)高水平的精度。這項(xiàng)研究還列出了一個(gè)詳細(xì)描述執(zhí)行 CF 測試夾具的要求在不同機(jī)床的位置。
在[7]Uddin 禮物的五軸運(yùn)動(dòng)誤差建模方法的五軸機(jī)床轉(zhuǎn)盤傾斜。錯(cuò)誤使用球桿儀測試旋轉(zhuǎn)軸線的確定。五軸運(yùn)動(dòng)誤差確定然后模擬使用五軸運(yùn)動(dòng)誤差模型來預(yù)測他們的影響力在錐截加工測試。然而本文研究三種不同錐配置,一個(gè) 75 度的傾角。報(bào)告結(jié)果比較的加工結(jié)果配置仿真結(jié)果。本文只給出了循環(huán)配置文件,這些
已經(jīng)覆蓋了加工結(jié)果。大部分循環(huán)錯(cuò)誤占比較運(yùn)動(dòng)誤差的仿真與實(shí)際循環(huán)概要文件,注意有趨勢差異沿著錐圓墻[7]。沒有引用樣本大小,因此單個(gè)加工測試。本文顯示了五軸運(yùn)動(dòng)誤差的影響性能,但是它也表明還有其他失蹤過程或動(dòng)態(tài)錯(cuò)誤等錯(cuò)誤。
香港也調(diào)查了運(yùn)動(dòng)誤差影響錐截測試方法通過五軸運(yùn)動(dòng)誤差模型的發(fā)展[8]。他檢查了兩個(gè)錐配置,都有相同的錐頂角不同傾斜角度。據(jù)香港工作的重點(diǎn)是模擬錯(cuò)誤位置的影響依賴這兩個(gè)傾斜轉(zhuǎn)盤機(jī)配置。在這種情況下,只檢查本文介紹循環(huán)概要文件。他的結(jié)果表明錐構(gòu)型的敏感性旋轉(zhuǎn)軸的錯(cuò)誤。從實(shí)驗(yàn)調(diào)查使用 R-test B-axis 運(yùn)動(dòng)被證明錯(cuò)誤影響錐加工的結(jié)果。
在[9]加藤等使用球桿儀衡量一個(gè)圓形的圈狀五軸本文介紹,模擬一個(gè)錐形表面的加工。本文是根據(jù)圓錐截 NAS979 和草案 ISO 10791 - 7 的考驗(yàn)。工件端球桿儀持有人是定位在編程理論基礎(chǔ)中心錐的點(diǎn)。工作報(bào)告的加藤檢查的敏感性的影響測量角度的數(shù)據(jù)備份系統(tǒng)與理論 CF 的半頂角。轉(zhuǎn)動(dòng)軸錯(cuò)誤的重點(diǎn)以及同化 CF 使用數(shù)據(jù)備份系統(tǒng)測量裝置進(jìn)行測試。執(zhí)行數(shù)據(jù)備份系統(tǒng)的能力測試,模擬 CF 測試,允許隔離的影響加工過程的錯(cuò)誤加工圓錐截的結(jié)果。
機(jī)評價(jià)技術(shù),如 R-test[10],或球桿儀[12]在空載條件下執(zhí)行。因此他們不考慮軸條件,或加工動(dòng)力學(xué)。測試的數(shù)據(jù)備份系統(tǒng)的主要優(yōu)點(diǎn)之一,R-test 快速獲得結(jié)果的能力一旦設(shè)置,允許變更的機(jī)器參數(shù),也為了調(diào)整機(jī)器和校準(zhǔn)機(jī)器運(yùn)動(dòng)結(jié) 構(gòu)。還有一個(gè)數(shù)字跟蹤這些類型的測試報(bào)告和錯(cuò)誤跟蹤可以很容易地生成的。加工測試,工件必須測量和跟蹤過程的參數(shù)較少使用。
實(shí)驗(yàn)研究計(jì)劃
在五軸 CAD / CAM 數(shù)控過程鏈,5 -軸機(jī)床及其運(yùn)動(dòng)精度是至關(guān)重要的。另外兩個(gè)轉(zhuǎn)動(dòng)軸的介紹一個(gè)典型配置,總是增加運(yùn)動(dòng)鏈的長度和總質(zhì)量驅(qū)動(dòng)的。這降低了硬度,增加潛在的阿貝誤差,導(dǎo)致更多的誤差來源與更復(fù)雜的控制策略要求在使用硬件[13]。完整的校準(zhǔn)機(jī)器定位系統(tǒng)是費(fèi)時(shí)和昂貴的停機(jī)時(shí)間和必要的工具。在正常工作條件下,磨損的機(jī)器組件包括推動(dòng)和指導(dǎo)系統(tǒng)導(dǎo)致的偏差,本文從名 義。重要的是,正是這些運(yùn)動(dòng)的錯(cuò)誤主要是負(fù)責(zé)數(shù)控機(jī)的體積誤差,通常在~
70%[14]。因此,它的動(dòng)機(jī)是研究員評估五軸 CAD / CAM 數(shù)控系統(tǒng),專注于運(yùn)動(dòng)誤差評估。
3 實(shí)驗(yàn)研究計(jì)劃
錐截測試被認(rèn)為是一個(gè)合適的機(jī)器錯(cuò)誤方法的調(diào)查,與許多研究錐截先前執(zhí) 行的標(biāo)準(zhǔn)配置。ISO 10791 - 7 兩種錐的配置細(xì)節(jié)。為了建立一個(gè)基礎(chǔ)調(diào)查多錐角產(chǎn)物 3.1 節(jié)所述,5 個(gè)樣本兩錐截配置進(jìn)行了加工試驗(yàn)在森精 NMV1500。的目的也進(jìn)行比較的影響機(jī)器配置錯(cuò)誤。測試設(shè)置詳細(xì)的表 1 中。
夾具用于配置是一個(gè)模塊化系統(tǒng)的傾角錐可以改變之間的配置。視錐細(xì)胞中心的偏移量從 C-axis 中心角度設(shè)置為:x = 37.5 毫米,y = 0,z = 100 毫米。這個(gè)偏移量是相同的配置。夾具的有限元分析顯示在典型負(fù)載下亞微米偏轉(zhuǎn)。設(shè)置如圖 3 所示。
3.1 多錐角的人工制品
作為我們研究的一部分錐截人工制品的使用五軸機(jī)器錯(cuò)誤評估,提出了一種 雙錐產(chǎn)物[15]。的基本前提是人工制品與多個(gè)錐形表面可以通過:改進(jìn)的錯(cuò)誤診斷的基礎(chǔ)
? 多個(gè)錐形面相對位置的精確測量
? 測量在一個(gè)更大的軸在一個(gè)范圍內(nèi)測試
這里開發(fā)的多錐角產(chǎn)物,稱為多錐目的是插入一個(gè)半球的錐形表面不同的頂點(diǎn)角度、同軸半球軸。分辨率依賴于頂角增量。為簡單起見,所以最基本的文物是一個(gè)雙錐配置如圖 4 所示。這將是第五節(jié)的調(diào)查
較低的錐頂角和人工制品的傾向是根據(jù) ISO 10791 - 7 配置 1,錐。上面的錐頂角是 90 度大于錐越低,即它是 120 度。這個(gè)配置設(shè)計(jì),本文需要有相同的 B-axis 范圍。這允許比較類似本文之間的上、下圓錐表面,B-axis 相同的范圍內(nèi),在兩個(gè)不同的執(zhí)行中央 B-axis 位置。這有潛在益處 B-axis 運(yùn)動(dòng)檢查的錯(cuò)誤。任何額外的錐形表面必須以這種方式搭配,與錐形壁長度相等的所有面孔。如果選擇奇數(shù)的圓錐表面,然后中間的表面將會(huì)有一個(gè)頂角的 90 度。
2012 ISO 10791 - 7 標(biāo)準(zhǔn)提出了一種錐形 20 毫米的高度,產(chǎn)生不同的錐壁長度取決于頂角。所以錐壁長度必須等于所有錐,最小長度為 6 毫米,由于 ISO 10791
- 7 的要求 2 毫米從頂部和底部循環(huán)測量。
4 標(biāo)準(zhǔn)錐的結(jié)果
4.1 配置 1 的結(jié)果
表 1 顯示了測量位置相對于循環(huán)引用(XY)和循環(huán)(O)5 配置 1 錐加工。圓度誤差是可以接受的報(bào)道 2012 ISO 10791 - 7 標(biāo)準(zhǔn)草案(80 微)。平均錐理論開發(fā)的意思是測量和標(biāo)準(zhǔn)偏差被測量,即 n = 15。從檢查結(jié)果,標(biāo)準(zhǔn)偏差小于 10 微米五軸和3 -軸加工操作。平均值的變化的 x 和 y 位置平均錐柱< = 2 配置 1 米。
然而,它指出有一個(gè)偏差低水平的循環(huán)平均錐上沿墻,增加 4 微米。重要的調(diào)查錐截錯(cuò)誤是在加工操作期間產(chǎn)生的環(huán)狀輪廓,運(yùn)動(dòng)學(xué)誤差模型可以被用來識別主要影響錯(cuò)誤嗎
圖 5 顯示了一個(gè)示例的循環(huán)配置文件記錄了錐在配置 1 加工試驗(yàn)。檢查所有樣品的循環(huán)配置文件有一個(gè)消極的 Y 軸附近的天線波束的控制效果伴隨著逐漸減少的影響消極 X 和消極的象限的圓形的陰謀。
雖然輪廓線和可重復(fù)性試驗(yàn)結(jié)果是在公差內(nèi),有一個(gè)重要的位置誤差錐與循環(huán)引用特性。循環(huán)引用特性是使用理想的機(jī)器編程模型,而錐表面特性是使用機(jī)器的校準(zhǔn)數(shù)據(jù)加工。
4.2 配置 2 結(jié)果
表 3 顯示了配置執(zhí)行的測量結(jié)果和分析 2 筒加工試驗(yàn)??荚嚨慕Y(jié)果,機(jī)器的可重復(fù)性和評價(jià)量化的標(biāo)準(zhǔn)差< 7μm 4μm 平均錐循環(huán)記錄。平均的變化意味著值, 在第六列,不同位置的 x 和 y 錐,4μm。這是配置不如報(bào)道 1,表明更大范圍的配置所需的 B-axis 2 可能引入小角錯(cuò)誤的工具,從而扭曲了錐軸。顯著位置誤差錐年代的軸心線與循環(huán)引用特性被認(rèn)為由于使用的理想機(jī)模型循環(huán)引用特性如配置 1。
圖 6 顯示了錐的循環(huán)配置文件示例配置 2。檢查所有樣品的循環(huán)配置文件配置 2 也有類似的功能的配置 1,然而,一個(gè)更大的循環(huán)價(jià)值。附近有一個(gè)天線波束的控制效應(yīng)的負(fù)面 Y 軸伴隨著逐漸減少的影響消極的 X 和 Y 象限的圓形的陰謀
5 多錐角產(chǎn)物結(jié)果
本研究的調(diào)查所需的加工舊版本之前描述所以使用理想的運(yùn)動(dòng)學(xué)模型進(jìn)行 M 半精 NMV1500 機(jī)器。所以的加工也表現(xiàn),分析了在同等條件下的配置 1 標(biāo)準(zhǔn)錐。
理想運(yùn)動(dòng)學(xué)模型被用來模擬兩錐軸運(yùn)動(dòng)所需的加工表面。這些結(jié)果圖 7 和圖 8 所示。B-axis 運(yùn)動(dòng)范圍的比較表明,他們是相同的上、下表面,然而 60 度抵消的開始位置。
多錐角的產(chǎn)物只需要一套參考功能。這允許精確比較個(gè)人的錐位置相對于彼此, 參考功能。這有可能提高五軸績效評估在更廣泛的機(jī)器的體積通過錐的精確比較的相對位置錯(cuò)誤。這種比較可能是有用的錯(cuò)誤診斷,錐之間的關(guān)系可以通過運(yùn)動(dòng)學(xué)誤差模型來理解。
多錐角的人工制品,單個(gè)所以人工制品加工為考試的結(jié)果與報(bào)道的標(biāo)準(zhǔn)錐加工試驗(yàn)。從加工試驗(yàn),這臺機(jī)器是量化的可重復(fù)性。這里的所以測試允許機(jī)器精度檢查 B-axis 65 度范圍,但由于兩個(gè)單獨(dú)的,舊版本。錯(cuò)誤的評估是基于兩個(gè)相鄰的分析錐形表面。提出了加工試驗(yàn)的結(jié)果在表 4。
這些結(jié)果的最重要的方面是上下錐形表面的位置偏移量,在X 方向最重要微42 米。這表明之間的不一致性加工兩個(gè)類似的工具路徑由一個(gè) B-axis 45 度角。是有區(qū)別的循環(huán)值兩個(gè)錐形表面 11 微米然而,一個(gè)類似的循環(huán)配置文件都被認(rèn)為,除了類似于標(biāo)準(zhǔn)錐加工試驗(yàn)結(jié)果。< 2 的標(biāo)準(zhǔn)偏差微米都是視錐細(xì)胞在三個(gè)循環(huán)測量。標(biāo)準(zhǔn)偏差的減少,所以的標(biāo)準(zhǔn)錐配置偏差的 7 關(guān)米和 4 微米,推斷是由于個(gè)人的墻長度減少錐上的所以比標(biāo)準(zhǔn)錐壁的長度。
6 結(jié)論和未來的前景
本文詳細(xì)介紹和分析了加工試驗(yàn)的標(biāo)準(zhǔn)錐截配置 ISO 10791 7。一個(gè)詳細(xì)的分析結(jié)果進(jìn)行了量化的過程可重復(fù)性。鑒定了大量的錯(cuò)誤結(jié)果。理想化機(jī)模型的
使用顯然是檢測到循環(huán)模型,顯示的功能錐截完全CAD / CAM 數(shù)控過程鏈測試方法。在循環(huán)配置文件錯(cuò)誤已經(jīng)出現(xiàn),在配置有相似之處。三個(gè)循環(huán)概要文件的標(biāo)準(zhǔn)偏差在一個(gè)錐增加配置 1 配置 2。工具的推斷,一個(gè)角錯(cuò)誤由于存在大范圍的 B-axis 配置 2。
主要的調(diào)查標(biāo)準(zhǔn)錐配置,多錐角的人工制品與加工試驗(yàn)進(jìn)行描述。多錐角起源的概念有很多提出了五軸誤差診斷方法的好處。通過插值的半球使用錐它允許多個(gè)五軸加工操作的比較單一的人工制品,因此只需要一套參考功能。在這個(gè)比較中, 多個(gè)錐的位置誤差相對于彼此可以準(zhǔn)確量化而不需要考慮循環(huán)引用。所以的人工制品 B-axis 調(diào)查檢查了 65 度范圍,然而有兩個(gè)集中本文介紹。兩種視錐細(xì)胞產(chǎn)生的交叉比較有潛力增強(qiáng)的錯(cuò)誤診斷通過更好的理解 B-axis 影響力。多錐產(chǎn)物被視為一個(gè)額外的人工制品在 2012 年給出的原始配置 ISO 10791 7。多錐角調(diào)查的產(chǎn)物,通過 5 -軸運(yùn)動(dòng)誤差建模,將用于分離錐循環(huán)中的主要誤差來源和位置錯(cuò)誤,從而有助于診斷。進(jìn)一步的系統(tǒng)測試計(jì)劃將計(jì)劃量化的重復(fù)性和功能所以相比標(biāo)準(zhǔn)錐。
我們想表達(dá)我們對您的感激之情機(jī)床技術(shù)研究基金會(huì)(MTTRF),森精、DP 技術(shù)寶貴的支持。我們也想給一個(gè)特殊的感謝 MTTRF 的優(yōu)秀組織這次會(huì)議,邀請參加。我們將真誠地感謝:愛爾蘭強(qiáng)生集團(tuán)NSAI,弗拉體和愛爾蘭政府(通過IRCSET)贊助這和相關(guān)研究。
參考文獻(xiàn)(節(jié)選)
1. Chaves-Jacob,J。、J.M.利納雷斯和 J.M. Sprauel,增加摩擦表面質(zhì)量的膝關(guān)節(jié)假體的自由曲面。CIRP 年報(bào),制造技術(shù),2011 年。60(1):531 - 534 頁
2. Chaves-Jacob,J。、g . Poulachon 和 e . Duc 最佳策略完成葉輪葉片使用五軸加工。國際先進(jìn)制造技術(shù)學(xué)報(bào),2012 年。58(5 - 8):573 - 583 頁。
3. k·a·Jagadeesh 這位 Rajenthirakumar、d 和分析幾何之間的交互和使用快速原型葉輪泵的效率。先進(jìn)制造技術(shù)的國際期刊,2009 年。44(9):890 - 899 頁。
4. 林,M.-T。和 S.-K。吳,伺服系統(tǒng)動(dòng)力學(xué)建模和分析錯(cuò)誤五軸機(jī)床的測量路徑。國際機(jī)床和制造雜志,2013 年。66(0):p . -14。
附錄 2 英文文獻(xiàn)
Investigation of a Multi-Cone Variant of the Standard Cone Frustum Test for 5-Axis Machine Tools
In the domain of CNC (Computer Numerical Control) machining, both positional and contouring accuracy are of extreme importance. Moreover, the need for higher precision and more complex freeform surfaces has reduced component geometric tolerances and increased the demand for higher process capabilities. 5-axis machine tools (or machining if you prefer) have enabled realization of these surfaces availing of full tool posture control, while also reducing set-up and production time. However, identification and quantification of associated errors is a challenge, often time consuming, with full physical correction near impossible. This paper's focus is on the repeatability and functionality of the cone frustum acceptance test presented in the draft standard 2012, ISO 10791 -7. This work builds on the state of the art and proposes that the artefact used in the standard cone frustum test be developed to include two or more conical surfaces. Explanation and investigation of the Multi-Cone artefact, with machining results on a Mori Seiki NMV1500, are reported. The results show the repeatability of the cone frustum test and the potential for diagnostic benefits using the Multi-Cone artefact.
Selection and peer-review under responsibility of the International Scientific Committee
of the 6th CIRP International Conference on High Performance Cutting 1.Introduction
A myriad of critical mechanical components depend, functionally, on high precision 3D surfaces. These include biocompatible medical devices, aerodynamic components for aero engines, and a range of automotive components, from turbocharger impellers to complex gears [1]. Moreover, the demand for more complex and higher precision 3D surfaces will only increase as products are developed, in many engineering sectors, to meet the demands for increased functionality and performance. The automotive sector is indicative, as may be surmised from the case study of the automotive turbo impeller shown in figure 1. It should be noted that the business process chain from Computer
Aided Design (CAD) to 5-axis Computer Numerical Control (CNC) manufacture affects the accuracy of the final surface realized [2]. This is the core process of interest in this research.
Figure 1 shows an automotive turbine impeller. A strong influence exists between the mathematical description of the 3D blade surface and the impeller’s operational efficiency [4]. These blades are often completely freeform, requiring 5-axisCNC machining, enabled through Computer-Aided Design and Manufacture (CAD/CAM – CNC machining). It is the accuracy of these processes, within the CAD/CAM – CNC chain, to both interpolate and generate the complex 3D surfaces, that determines the final geometry and finish quality.
2. Cone Frustum
The Cone Frustum (CF) test concept originates from NAS (National Aerospace Standard) 979 as an acceptance test for 5-axis machine tools. Within NAS979 however, the Cone axis was aligned to the machine Z-axis. From the works of Bossoni [5], the inclination of the cone frustum was scientifically proposed. From this the technical committee of ISO10791-7 (TC39) have included the inclined cone and its configuration values into ISO/DIS 10791-7 2012. The conical surface produced is designed to assess the 5-axis contouring performance of the machine tool when all axes operate simultaneously. Two machined features give a planar and positional reference. The test configuration is shown in figure 2.
The conical surface generated can be measured for form, orientation and position relative to the machine reference features. Two standard cone configurations are detailed in the standard, with their inclination and apex angles as the varied parameters. These configurations will be detailed in section 2. There are a number of benefits from this test, as follows:
? Minimal machine downtime
? Can detect critical errors
? precision roundness measurement over CMM measurements possible
? Minimised cutting forces involved
? Complete systems test
? Fast, thus thermal motion does not affect the results
3. 2.1. Cone Frustum as a Diagnostics Tool
Critically examining some of the literature based on cone frustum method, it is seen that there have been a number ofinteresting contributions.interesting contributions.
Gebhardt et al. examined the influence of work piece positioning in four different locations within a Mori Seiki NMV5000 with TTTRR configuration [6]. Small differences were seen between the cone circularity results. The circularities reported by Gebhardt were affected by increasing range of the linear axes and the abbé error effect on the rotational axes performance. The small variation between cone circularities reported throughout the machine, showed that the linear axes and, critically, the rotational axes errors were at a high level of precision. This research also lays out a detailed description of the fixturing requirements for performing CF tests in different locations of the machine tool.
In [7] Uddin presents a method of 5-axis kinematic error modelling for a 5-axis machine tool with a tilting rotary table. The errors of the rotary axes were identified using ballbar testing. The 5-axis kinematic errors identified are then simulated using the 5-axis kinematic error model to predict their influence on a cone frustum machining test.
This paper however examines three different cone configurations, one with an inclination angle of 75 degrees. The reported results compare the machining results of the configurations with the simulated results. In this paper only the circularity profiles are presented and these have been overlaid on the obtained machining results. A large proportion of the circularity errors are accounted for from a comparison of kinematic error simulations with the real circularity profiles, noting that there are trending differences in the circularities along the cones wall [7]. No sample size is quoted, thus a single machining test is assumed. This paper shows the influence of the kinematic errors on the 5-axis performance, however it also shows that there are other unaccounted errors such as process or dynamic errors.
Hong also investigated the kinematic error influence on the cone frustum test method through the development of a 5-axis kinematic error model [8]. He examined two cone
configurations, which both had the same cone apex angle but different inclination angles. The focus of the work reported by Hong was to simulate the influence of
positional dependent errors on these two configurations on a tilting rotary table machine. In this case, only the tool-path circularity profile was examined. His results show the sensitivity of the cone configurations to rotary axes errors. From experimental investigations using the R-test, B-axis motion errors were shown to influence the cone machining results.
In [9] Kato et al used the ballbar to measure the circularity of a circular 5-axis tool-path, simulating the machining of a conical surface. The tool-path was produced
according to the cone frustum test of NAS979 and draft ISO 10791-7. The workpiece end ballbar holder was positioned at the programmed theoretical base centre point for the cone. The work reported by Kato examines the effects of the sensitivity of the measurement angle of the DBB in relation to the half apex angle of the theoretical CF. Rotational axes errors were the key focus as well as the assimilation of the CF test using the DBB measurement device. The ability to perform DBB tests that simulate the CF test, allow for the isolation of the influence of the machining process errors on the machined cone frustum results.
Machine evaluation techniques such as the R-test [10], nonbar [11] or ballbar [12] are performed under no load conditions. As such they do not consider spindle condition, or machining dynamics. One of the main advantages of tests like the DBB and R-test is the ability to obtain results quickly once setup, allowing for alteration of machine parameters, in order to tune the machine and also calibrate the machines kinematic structure. There is also a digital traceability in these types of test as a report and error trace can be easily generated. For machining tests, the workpiece must be measured and there is less traceability of the process parameters used.
4. Experimental Research Plan
Within the 5-axis CAD/CAM – CNC process chain, the 5- axis machine tool and its kinematic accuracy are critical. The introduction of two additional rotational axes for a typical configuration, invariably increases the length of the kinematic chain and total
driven mass. This reduces rigidity and increases the potential for abbé error, leading to a higher number of error sources with more complex control strategies required over the 3-axis counterpart [13]. Full calibration of machine positioning systems is time consuming and expensive due to down time and necessary instrumentation. Under normal working conditions, wear of machine components including drive and guide systems lead to the deviations of the tool-path from nominal. Importantly, it is these kinematic errors that are largely responsible for the volumetric errors of the CNC machine, typically at ~70% [14]. As such, it is the motivation of this researcher to evaluate the 5-axis CAD/CAM – CNC system, focusing on the kinematic error assessment.
The cone frustum test is seen as a suitable method for machine error investigation, with much research previously performed on the standard configuration cone frustum. ISO 10791-7 details two cone configurations. In order to establish a basis for investigation of the Multi-Cone artefact described in section 3.1, a five sample machining trial of both cone frustum configurations was conducted on a Mori Seiki NMV1500. The purpose was also to perform a comparison of the effect of the machines errors on both configurations. The test setup is detailed in table 1.
The fixturing used for both configurations was a modular system where the inclination angle of the cone could be changed between both configurations. The offset of the cones centre from the C-axis centre point was set as: x=37.5mm, y=0, z=100mm. This offset was the same for both configurations. Finite element analysis of the fixture showed submicron deflection under typical loads. The setup is shown in figure 3.
3.1. The Multi-Cone Artefact
As part of our research into the use of the cone frustum artefact for 5-axis machine error assessment, a double cone artefact was proposed in [15]. The basic premise is that an artefact with multiple conical surfaces can be the basis for improved error diagnostics through:
? Accurate measurement of the multiple relative conical surface positions
? Measurement over a larger axis range in a single test
The Multi-Cone artefact developed here, referred to as an MCone, is designed to interpolate a hemisphere by conical surfaces of different apex angles, coaxial to the hemisphere axis. The resolution is dependent on the apex angle increment. For simplicity, the most basic of the M-Cone artefacts is a two-cone configuration shown in figure 4. This will be investigated in section 5
The lower cone’s apex angle and the artefact’s inclination are per the ISO 10791-7 configuration 1, cone. The upper cone apex angle is greater by 90 degrees than the lower cone, i.e. it is 120 degrees. This configuration is designed such that the tool-paths required have the same B-axis range. This allows for comparison of similar tool-paths between the upper and lower conical surfaces, with the same B-axis range, performed at two different central B-axis locations. This has the potential benefits for the examination of B-axis motion errors. Any additional conical surfaces must be paired in this manner, with the conical wall length equal across all faces. If an odd number of conical surfaces are chosen, then the middle surface will have an apex angle of 90 degrees.
The 2012 ISO 10791-7 standard presents a cone height of 20mm, which produces a different cone wall length depending on apex angle. The M-Cone cone wall length must be equal across all cones, with a minimum length of 6mm, due to the requirements in ISO 10791-7 of 2mm from top and bottom for circularity measurements.
5. Standard Cone Results
4.1. Configuration 1 Results
Table 1 shows the measured position relative to the circular reference (XY) and circularity (O) for the five configuration 1 cones machined. The circularity error reported is acceptable by the 2012 ISO 10791-7 draft standard (80μm). A theoretical average cone is developed from the mean of the measurements and the standard deviation is taken from all measurements, i.e. n=15. From examining the result, the standard deviation is less than 10 μm for both 5-axis and 3- axis machining operations. The variation of the mean values of the x and y positions in the average cone column are <=2μm for configuration 1.
It is noted however, that there is a deviation in circularity from the lower level of the
average cone to the upper along its wall, with an increase of 4μm. What is important for the investigation of cone frustum errors is the circularity profile produced during the machining operation, as kinematic error modelling can be used to identify the major influencing error groups
Figure 5 shows the circularity profiles recorded for a sample cone in the configuration 1 machining trial. From examination across all samples, the circularity profile has a lobing effect near the negative Y-axis accompanied by a tapering effect in the negative X and negative Y quadrant of the circular plot.
Although the contouring and repeatability of the trial results are within tolerance, there is a significant positional error of the cone in relation to the circular reference feature. The circular refere
收藏