《高二數(shù)學(xué) 和差積商的導(dǎo)數(shù) 課件選修1》由會員分享,可在線閱讀,更多相關(guān)《高二數(shù)學(xué) 和差積商的導(dǎo)數(shù) 課件選修1(11頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、為常數(shù))為常數(shù)) (x)x)(1(1 1)a0,lna(aa)a)(2(xx 且且1)a, 0a(xlna1elogx1)xlog)(3(aa 且且sinx(7)(cosx) e)e)(4(xx x1(5)(lnx) cosx )sinx)(6( 基本初等函數(shù)求導(dǎo)公式基本初等函數(shù)求導(dǎo)公式: :知識回顧知識回顧:2 2回顧導(dǎo)數(shù)的定義回顧導(dǎo)數(shù)的定義 xxfxxfxyxfxx )()(limlim)(00 3 3利用導(dǎo)數(shù)定義求利用導(dǎo)數(shù)定義求 , , 的導(dǎo)數(shù)的導(dǎo)數(shù) xxxf 2)(2)(xxg xxh )(4 4探究上述三個函數(shù)及導(dǎo)數(shù)之間的關(guān)系探究上述三個函數(shù)及導(dǎo)數(shù)之間的關(guān)系 結(jié)論:結(jié)論: .)()(
2、)(22 xxxx即:即:)()(xvxu 5猜想一般函數(shù)的結(jié)論猜想一般函數(shù)的結(jié)論 )()(xvxu )()(xvxu)()(xvxu ).()()(xhxgxf ).()()(xhxgxf 函數(shù)的和、差、積、商的導(dǎo)數(shù)函數(shù)的和、差、積、商的導(dǎo)數(shù)證明猜想證明猜想 ).()()()(xvxuxvxu 證明:令證明:令 ).()()(xvxuxfy )()()()(xvxuxxvxxuy .)()()()(vuxvxxvxuxxu .limlimlimlim0000 xvxuxvxuxyxxxx 即即 ).()()()(xvxuxvxu .xvxuxy 函數(shù)的和、差、積、商的導(dǎo)數(shù)函數(shù)的和、差、積、商
3、的導(dǎo)數(shù) 法則法則1 兩個函數(shù)的和(或差)的導(dǎo)數(shù),等于兩個函數(shù)的和(或差)的導(dǎo)數(shù),等于這兩個函數(shù)的導(dǎo)數(shù)的和(或差),即:這兩個函數(shù)的導(dǎo)數(shù)的和(或差),即:.)(vuvu.sin)(. 12的的導(dǎo)導(dǎo)數(shù)數(shù)求求函函數(shù)數(shù)例例xxxf .2623)(. 223的導(dǎo)數(shù)的導(dǎo)數(shù)求函數(shù)求函數(shù)例例 xxxxg 法則法則2 兩個函數(shù)的積的導(dǎo)數(shù),等于第一個函兩個函數(shù)的積的導(dǎo)數(shù),等于第一個函數(shù)的導(dǎo)數(shù)乘以第二個函數(shù)加上第一個函數(shù)乘以第數(shù)的導(dǎo)數(shù)乘以第二個函數(shù)加上第一個函數(shù)乘以第二個函數(shù)的導(dǎo)數(shù),即:二個函數(shù)的導(dǎo)數(shù),即: 函數(shù)的和、差、積、商的導(dǎo)數(shù)函數(shù)的和、差、積、商的導(dǎo)數(shù)常數(shù)與函數(shù)的積的導(dǎo)數(shù)等于常數(shù)乘以函數(shù)的導(dǎo)數(shù)常數(shù)與函數(shù)的積
4、的導(dǎo)數(shù)等于常數(shù)乘以函數(shù)的導(dǎo)數(shù) 推論推論:若若C為常數(shù),為常數(shù), )(Cu.uC .)(vuvuuv.sin)(3的導(dǎo)數(shù)的導(dǎo)數(shù):求函數(shù):求函數(shù)例例xxxh 函數(shù)的和、差、積、商的導(dǎo)數(shù)函數(shù)的和、差、積、商的導(dǎo)數(shù) 法則法則3 兩個函數(shù)的商的導(dǎo)數(shù),等于分子的兩個函數(shù)的商的導(dǎo)數(shù),等于分子的導(dǎo)數(shù)與分母的積,減去分母的導(dǎo)數(shù)與分子的積,導(dǎo)數(shù)與分母的積,減去分母的導(dǎo)數(shù)與分子的積,再除以分母的平方再除以分母的平方,即:即: )0(2 vvuvvuvu.1)(42的的導(dǎo)導(dǎo)數(shù)數(shù):求求函函數(shù)數(shù)例例ttts 的導(dǎo)數(shù)的導(dǎo)數(shù)求求4532. 122 xxxy的的導(dǎo)導(dǎo)數(shù)數(shù)求求)23)(32(. 22 xxy98182 xx解:解
5、:)23)(32()23()32(22 xxxxy3)32()23(42 xxx . 98182 xxy6946)23)(32(232 xxxxxy法二:法二:練習(xí)練習(xí)的導(dǎo)數(shù)的導(dǎo)數(shù)xxysin. 32 xxxxxy222sin)(sinsin)(解:xxxxx22sincossin2處處的的導(dǎo)導(dǎo)數(shù)數(shù)在在點點求求333. 42 xxxy222)3(2)3()3(1xxxxy解:222)3(36xxx6114424)39(3189|23xy 函數(shù)的和、差、積、商的導(dǎo)數(shù)函數(shù)的和、差、積、商的導(dǎo)數(shù)課堂小結(jié)課堂小結(jié) 1 1、和、差、積、商的導(dǎo)數(shù)運算法則;、和、差、積、商的導(dǎo)數(shù)運算法則; 2 2、和、差、積、商的導(dǎo)數(shù)運算法則的運用;、和、差、積、商的導(dǎo)數(shù)運算法則的運用; 3 3、多項式函數(shù)的導(dǎo)數(shù)的求法。、多項式函數(shù)的導(dǎo)數(shù)的求法。作業(yè):作業(yè):練習(xí)練習(xí)1 1求求 的導(dǎo)數(shù)的導(dǎo)數(shù) )11(32xxxxy 3223xxy 2 2求求 的導(dǎo)數(shù)的導(dǎo)數(shù) )11)(1( xxy.1121 xxy