《高考數(shù)學大二輪專題復習沖刺方案文數(shù)經(jīng)典版文檔:中難提分突破特訓五 Word版含解析》由會員分享,可在線閱讀,更多相關(guān)《高考數(shù)學大二輪專題復習沖刺方案文數(shù)經(jīng)典版文檔:中難提分突破特訓五 Word版含解析(7頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、
中難提分突破特訓(五)
1.已知數(shù)列{an}滿足:a1=1,an+1=an+,bn=.
(1)求數(shù)列{bn}的通項公式;
(2)求數(shù)列{an}的前n項和Sn.
解 (1)由an+1=an+,得=+,
又bn=,∴bn+1-bn=,
由a1=1,得b1=1,
累加可得(b2-b1)+(b3-b2)+…+(bn-bn-1)=++…+,即bn-b1==1-,
∴bn=2-.
(2)由(1)可知an=2n-,設(shè)數(shù)列的前n項和為Tn,則
Tn=+++…+, ?、?
Tn=+++…+, ②
①-②,得Tn=+++…+-
=-=2-,
∴Tn=4-.
易知數(shù)列{2n}
2、的前n項和為n(n+1),
∴Sn=n(n+1)-4+.
2.如圖,直三棱柱ABC-A1B1C1的所有棱長都是2,D,E分別是AC,CC1的中點.
(1)求證:AE⊥平面A1BD;
(2)求三棱錐B1-A1BD的體積.
解 (1)證明:因為AB=BC=CA,D是AC的中點,所以BD⊥AC.
因為在直三棱柱ABC-A1B1C1中,AA1⊥平面ABC,AA1?平面AA1C1C,所以平面AA1C1C⊥平面ABC,
又平面AA1C1C∩平面ABC=AC,所以BD⊥平面AA1C1C,
又AE?平面AA1C1C,所以BD⊥AE.
在正方形AA1C1C中,D,E分別是AC,CC1的中點
3、,易證得A1D⊥AE,
又A1D∩BD=D,A1D?平面A1BD,BD?平面A1BD,所以AE⊥平面A1BD.
(2)如圖,連接AB1交A1B于點O,則O為AB1的中點,
所以點B1到平面A1BD的距離等于點A到平面A1BD的距離,易知BD=,
所以V三棱錐B1-A1BD=V三棱錐A-A1BD=V三棱錐B-AA1D=×S△AA1D×BD=×
×2×1×=,
所以三棱錐B1-A1BD的體積為.
3.黨的十九大明確把精準脫貧作為決勝全面建成小康社會必須打好的三大攻堅戰(zhàn)之一.為堅決打贏脫貧攻堅戰(zhàn),某幫扶單位為幫助定點扶貧村脫貧,堅持扶貧同扶智相結(jié)合,此幫扶單位考察了甲、乙兩種不同的
4、農(nóng)產(chǎn)品加工生產(chǎn)方式,現(xiàn)對兩種生產(chǎn)方式的產(chǎn)品質(zhì)量進行對比,其質(zhì)量按測試指標可劃分為:指標在區(qū)間[80,100]的為優(yōu)等品;指標在區(qū)間[60,80)的為合格品,現(xiàn)分別從甲、乙兩種不同加工方式生產(chǎn)的農(nóng)產(chǎn)品中,各自隨機抽取100件作為樣本進行檢測,測試指標結(jié)果的頻數(shù)分布表如下:
(1)在用甲種方式生產(chǎn)的產(chǎn)品中,按合格品與優(yōu)等品用分層抽樣方式,隨機抽出5件產(chǎn)品,①求這5件產(chǎn)品中,優(yōu)等品和合格品各多少件;②再從這5件產(chǎn)品中,隨機抽出2件,求這2件中恰有1件是優(yōu)等品的概率;
(2)所加工生產(chǎn)的農(nóng)產(chǎn)品,若是優(yōu)等品每件可售55元,若是合格品每件可售25元.甲種生產(chǎn)方式每生產(chǎn)一件產(chǎn)品的成本為15元,乙種
5、生產(chǎn)方式每生產(chǎn)一件產(chǎn)品的成本為20元.用樣本估計總體,比較在甲、乙兩種不同生產(chǎn)方式下,該扶貧單位要選擇哪種生產(chǎn)方式來幫助該扶貧村脫貧?
解 (1)①由頻數(shù)分布表知:甲的優(yōu)等品率為0.6,合格品率為0.4,所以抽出的5件產(chǎn)品中,優(yōu)等品3件,合格品2件.
②記3件優(yōu)等品為A,B,C,2件合格品分別為a,b,從中隨機抽2件,抽取方式有AB,AC,Aa,Ab,BC,Ba,Bb,Ca,Cb,ab,共10種,
設(shè)“這2件中恰有1件是優(yōu)等品”為事件M,則事件M發(fā)生的情況有6種,
所以P(M)==.
(2)根據(jù)樣本知甲種生產(chǎn)方式生產(chǎn)100件農(nóng)產(chǎn)品有60件優(yōu)等品,40件合格品;乙種生產(chǎn)方式生產(chǎn)100件
6、農(nóng)產(chǎn)品有80件優(yōu)等品,20件合格品.
設(shè)甲種生產(chǎn)方式每生產(chǎn)100件所獲得的利潤為T1元,
乙種生產(chǎn)方式每生產(chǎn)100件所獲得的利潤為T2元,
可得T1=60×(55-15)+40×(25-15)=2800(元),
T2=80×(55-20)+20×(25-20)=2900(元),
由于T1
7、.
(1)寫出曲線C1的極坐標方程,并求C1與C2交點的極坐標;
(2)射線θ=β與曲線C1,C2分別交于點A,B(A,B異于原點),求的取值范圍.
解 (1)由題意可得曲線C1的普通方程為x2+(y-2)2=4,把x=ρcosθ,y=ρsinθ代入,
得曲線C1的極坐標方程為ρ=4sinθ,
聯(lián)立C1,C2的極坐標方程,得
得4sinθcos2θ=sinθ,
此時0≤θ<π,
①當sinθ=0時,θ=0,ρ=0,得交點的極坐標為(0,0);
②當sinθ≠0時,cos2θ=,當cosθ=時,θ=,ρ=2,得交點的極坐標為,
當cosθ=-時,θ=,ρ=2,得交點的極坐標為
8、,所以C1與C2交點的極坐標為(0,0),,.
(2)將θ=β代入C1的極坐標方程,得ρ1=4sinβ,
代入C2的極坐標方程,得ρ2=,
∴==4cos2β,
∵≤β≤,∴1≤4cos2β≤3,
∴的取值范圍為[1,3].
5.已知函數(shù)f(x)=|2x+1|-|2x-3|,g(x)=|x+1|+|x-a|.
(1)求f(x)≥1的解集;
(2)若對任意的t∈R,s∈R,都有g(shù)(s)≥f(t).求a的取值范圍.
解 (1)∵函數(shù)f(x)=|2x+1|-|2x-3|,
∴f(x)≥1,等價于|2x+1|-|2x-3|≥1,
等價于?、?
或 ②
或 ③
①無解,解②得≤x≤,解③得x>,
綜上可得,不等式的解集為.
(2)若對任意的t∈R,s∈R,都有g(shù)(s)≥f(t),
可得g(x)min≥f(x)max.
∵函數(shù)f(x)=|2x+1|-|2x-3|≤|2x+1-(2x-3)|=4,
∴f(x)max=4.
∵g(x)=|x+1|+|x-a|≥|x+1-(x-a)|=|a+1|,
故g(x)min=|a+1|,∴|a+1|≥4,∴a+1≥4或a+1≤-4,
解得a≥3或a≤-5,
故a的取值范圍為{a|a≥3或a≤-5}.