2022高考數(shù)學(xué)“一本”培養(yǎng)專(zhuān)題突破 第2部分 專(zhuān)題5 解析幾何 第8講 直線(xiàn)與圓學(xué)案 文
《2022高考數(shù)學(xué)“一本”培養(yǎng)專(zhuān)題突破 第2部分 專(zhuān)題5 解析幾何 第8講 直線(xiàn)與圓學(xué)案 文》由會(huì)員分享,可在線(xiàn)閱讀,更多相關(guān)《2022高考數(shù)學(xué)“一本”培養(yǎng)專(zhuān)題突破 第2部分 專(zhuān)題5 解析幾何 第8講 直線(xiàn)與圓學(xué)案 文(9頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、2022高考數(shù)學(xué)“一本”培養(yǎng)專(zhuān)題突破 第2部分 專(zhuān)題5 解析幾何 第8講 直線(xiàn)與圓學(xué)案 文 熱點(diǎn)題型 真題統(tǒng)計(jì) 命題規(guī)律 題型1:圓的方程 2018全國(guó)卷ⅡT20;2017全國(guó)卷ⅢT20 1.高考中對(duì)此部分內(nèi)部的考查以“一小”或“一大”的形式呈現(xiàn). 2.重點(diǎn)考查直線(xiàn)與圓的位置關(guān)系,圓的方程常與圓錐曲線(xiàn)交匯命題. 題型2:直線(xiàn)與圓、圓與圓的位置關(guān)系 2018全國(guó)卷ⅠT15;2018全國(guó)卷ⅢT8;2017全國(guó)卷ⅢT11 2016全國(guó)卷ⅠT15;2016全國(guó)卷ⅡT6;2016全國(guó)卷ⅢT15 2015全國(guó)卷ⅠT20;2014全國(guó)卷ⅠT20;2014全國(guó)卷ⅡT12 1.圓的標(biāo)準(zhǔn)方
2、程 當(dāng)圓心為(a,b),半徑為r時(shí),其標(biāo)準(zhǔn)方程為(x-a)2+(y-b)2=r2,特別地,當(dāng)圓心在原點(diǎn)時(shí),方程為x2+y2=r2. 2.圓的一般方程 x2+y2+Dx+Ey+F=0,其中D2+E2-4F>0,表示以為圓心,為半徑的圓. ■高考考法示例· 【例1】 (1)方程x2+y2+ax+2ay+2a2+a-1=0表示圓,則a的取值范圍是( ) A.(-∞,-2)∪ B. C.(-2,0) D. (2)(2018·廈門(mén)模擬)圓C與x軸相切于T(1,0),與y軸正半軸交于兩點(diǎn)A,B,且|AB|=2,則圓C的標(biāo)準(zhǔn)方程為( ) A.(x-1)2+(y-)2=2 B.(
3、x-1)2+(y-2)2=2 C.(x+1)2+(y+)2=4 D.(x-1)2+(y-)2=4 (3)(2018·黃山模擬)已知圓C關(guān)于y軸對(duì)稱(chēng),經(jīng)過(guò)點(diǎn)A(1,0),且被x軸分成的兩段弧長(zhǎng)之比為1∶2,則圓C的方程為_(kāi)_______. (1)D (2)A (3)x2+2= [(1)方程可化為2+(y+a)2=1-a-,由題意知1-a->0,解得-2<a<,故選D. (2)由題意得,圓C的半徑為=,圓心坐標(biāo)為(1,),∴圓C的標(biāo)準(zhǔn)方程為(x-1)2+(y-)2=2,故選A. (3)因?yàn)閳AC關(guān)于y軸對(duì)稱(chēng),所以圓C的圓心C在y軸上, 可設(shè)C(0,b), 設(shè)圓C的半徑為r, 則
4、圓C的方程為x2+(y-b)2=r2. 依題意,得解得 所以圓C的方程為x2+=.] [方法歸納] 求圓的方程的兩種方法 1.幾何法,通過(guò)研究圓的性質(zhì)、直線(xiàn)和圓、圓與圓的位置關(guān)系,進(jìn)而求得圓的基本量和方程. 2.代數(shù)法,即用待定系數(shù)法先設(shè)出圓的方程,再由條件求得各系數(shù). ■對(duì)點(diǎn)即時(shí)訓(xùn)練· 1.(2018·青島模擬)與直線(xiàn)x+y-2=0和曲線(xiàn)x2+y2-12x-12y+54=0都相切的半徑最小的圓的標(biāo)準(zhǔn)方程是( ) A.(x+2)2+(y-2)2=2 B.(x-2)2+(y+2)2=2 C.(x+2)2+(y+2)2=2 D.(x-2)2+(y-2)2=2 D [由題意
5、知,曲線(xiàn)為(x-6)2+(y-6)2=18,過(guò)圓心(6,6)作直線(xiàn)x+y-2=0的垂線(xiàn),垂線(xiàn)方程為y=x,則所求的最小圓的圓心必在直線(xiàn)y=x上,又(6,6)到直線(xiàn)x+y-2=0的距離d==5,故最小圓的半徑為,圓心坐標(biāo)為(2,2),所以標(biāo)準(zhǔn)方程為(x-2)2+(y-2)2=2.] 2.一束光線(xiàn)從圓C的圓心C(-1,1)出發(fā),經(jīng)x軸反射到圓C1:(x-2)2+(y-3)2=1上的最短路程剛好是圓C的直徑,則圓C的方程為( ) A.(x+1)2+(y-1)2=4 B.(x+1)2+(y-1)2=5 C.(x+1)2+(y-1)2=16 D.(x+1)2+(y-1)2=25 A [圓C
6、1的圓心C1的坐標(biāo)為(2,3),半徑為r1=1.點(diǎn)C(-1,1)關(guān)于x軸的對(duì)稱(chēng)點(diǎn)C′的坐標(biāo)為(-1,-1).因?yàn)镃′在反射線(xiàn)上,所以最短路程為|C′C1|-r1,即-1=4.故圓C的半徑為r=×4=2,所以圓C的方程為(x+1)2+(y-1)2=4,故選A.] 題型2 直線(xiàn)與圓、圓與圓的位置關(guān)系 ■核心知識(shí)儲(chǔ)備· 1.直線(xiàn)和圓的位置關(guān)系的判斷方法 直線(xiàn)l:Ax+By+C=0(A2+B2≠0)與圓:(x-a)2+(y-b)2=r2(r>0)的位置關(guān)系如表. 方法 位置 關(guān)系 幾何法:根據(jù)d=與r的大小關(guān)系 代數(shù)法: 消元得一元二次方程,根據(jù) 判別式Δ的符號(hào)判斷 相交
7、 d<r Δ>0 相切 d=r Δ=0 相離 d>r Δ<0 2.弦長(zhǎng)與切線(xiàn)長(zhǎng)的計(jì)算方法 (1)弦長(zhǎng)的計(jì)算:直線(xiàn)l與圓C相交于A,B兩點(diǎn),則|AB|=2(其中d為弦心距). (2)切線(xiàn)長(zhǎng)的計(jì)算:過(guò)點(diǎn)P向圓引切線(xiàn)PA,則|PA|=(其中C為圓心). 3.圓與圓的位置關(guān)系 設(shè)兩圓圓心分別為O1,O2,半徑分別為r1,r2,|O1O2|=d,則 (1)d>r1+r2?兩圓外離?4條公切線(xiàn); (2)d=r1+r2?兩圓外切?3條公切線(xiàn); (3)|r1-r2|<d<r1+r2?兩圓相交?2條公切線(xiàn); (4)d=|r1-r2|(r1≠r2)?兩圓內(nèi)切?1條公切線(xiàn); (5
8、)0<d<|r1-r2|(r1≠r2)?兩圓內(nèi)含?無(wú)公切線(xiàn). ■高考考法示例· 【例2】 (2016·全國(guó)卷Ⅲ)已知直線(xiàn)l:x-y+6=0與圓x2+y2=12交于A,B兩點(diǎn),過(guò)A,B分別作l的垂線(xiàn)與x軸交于C,D兩點(diǎn),則|CD|=________. [思路點(diǎn)撥] 法一:→→→→ 法二:→→ 4 [法一:作出平面圖形,利用數(shù)形結(jié)合求解. 如圖所示,∵直線(xiàn)AB的方程為x-y+6=0, ∴kAB=,∴∠BPD=30°, 從而∠BDP=60°. 在Rt△BOD中, ∵|OB|=2,∴|OD|=2. 取AB的中點(diǎn)H,連接OH,則OH⊥AB, ∴OH為直角梯形ABDC的
9、中位線(xiàn), ∴|OC|=|OD|,∴|CD|=2|OD|=2×2=4. 法二:∵圓心O(0,0)到直線(xiàn)x-y+6=0的距離為d==3, ∴|AB|=2=2. 如圖②所示,過(guò)點(diǎn)C作CE⊥BD于點(diǎn)E. ∵直線(xiàn)l的斜率為, ∴∠ECD=30°, ∴|CD|====4.] (2)(2018·全國(guó)卷Ⅱ)設(shè)拋物線(xiàn)C:y2=4x的焦點(diǎn)為F,過(guò)F且斜率為k(k>0)的直線(xiàn)l與C交于A,B兩點(diǎn),|AB|=8. ①求l的方程; ②求過(guò)點(diǎn)A,B且與C的準(zhǔn)線(xiàn)相切的圓的方程. [思路點(diǎn)撥] ①→→ ②→→ [解]?、儆深}意得F(1,0),l的方程為y=k(x-1)(k>0). 設(shè)A(x
10、1,y1),B(x2,y2). 由得k2x2-(2k2+4)x+k2=0. Δ=16k2+16>0,故x1+x2=. 所以|AB|=|AF|+|BF|=(x1+1)+(x2+1)=. 由題設(shè)知=8,解得k=-1(舍去),k=1. 因此l的方程為y=x-1. ②由①得AB的中點(diǎn)坐標(biāo)為(3,2),所以AB的垂直平分線(xiàn)方程為y-2=-(x-3),即y=-x+5. 設(shè)所求圓的圓心坐標(biāo)為(x0,y0),則 解得或 因此所求圓的方程為 (x-3)2+(y-2)2=16或(x-11)2+(y+6)2=144. [方法歸納] 1.解決直線(xiàn)與圓、圓與圓位置關(guān)系問(wèn)題的指導(dǎo)思想 討論
11、直線(xiàn)與圓及圓與圓的位置關(guān)系時(shí),要注意數(shù)形結(jié)合,充分利用圓的幾何性質(zhì)尋找解題途徑,減少運(yùn)算量. 2.求圓中有關(guān)距離的常用方法 圓上的點(diǎn)與圓外點(diǎn)的距離的最值問(wèn)題,可以轉(zhuǎn)化為圓心到點(diǎn)的距離問(wèn)題;圓上的點(diǎn)與直線(xiàn)上點(diǎn)的距離的最值問(wèn)題,可以轉(zhuǎn)化為圓心到直線(xiàn)的距離問(wèn)題;圓上的點(diǎn)與另一圓上點(diǎn)的距離的最值問(wèn)題,可以轉(zhuǎn)化為圓心到圓心的距離問(wèn)題. (教師備選) 在平面直角坐標(biāo)系xOy中,以坐標(biāo)原點(diǎn)O為圓心的圓被直線(xiàn)x-y+4=0截得的弦長(zhǎng)為2. (1)求圓O的方程; (2)若斜率為2的直線(xiàn)l與圓O相交于A,B兩點(diǎn),且點(diǎn)D(-1,0)在以AB為直徑的圓的內(nèi)部,求直線(xiàn)l在y軸上的截距的取值范圍. [解]
12、(1)設(shè)x2+y2=r2,圓心(0,0)到直線(xiàn)x-y+4=0的距離d=2,又因?yàn)榻氐玫南议L(zhǎng)為2,所以r==,圓O的方程為x2+y2=7. (2)設(shè)斜率為2的直線(xiàn)l的方程為y=2x+b, 與圓相交于A,B兩點(diǎn),設(shè)A(x1,y1),B(x2,y2). 由得5x2+4bx+b2-7=0, 則 已知點(diǎn)D(-1,0)在以AB為直徑的圓的內(nèi)部,所以·<0,即·=(x1+1,y1)·(x2+1,y2)=5x1x2+(2b+1)(x1+x2)+b2+1=--6<0,解得-3<b<5,滿(mǎn)足Δ>0. 所以直線(xiàn)l在y軸上的截距的取值范圍為(-3,5). ■對(duì)點(diǎn)即時(shí)訓(xùn)練· 1.(2018·福州模擬)直
13、線(xiàn)x+y=a與圓x2+y2=a2+(a-1)2相交于點(diǎn)A,B,點(diǎn)O是坐標(biāo)原點(diǎn),若△AOB是正三角形,則實(shí)數(shù)a的值為( ) A.1 B.-1 C. D.- C [由題意得,直線(xiàn)被圓截得的弦長(zhǎng)等于半徑,圓的圓心坐標(biāo)O(0,0),設(shè)圓半徑為r,圓心到直線(xiàn)的距離為d,則d==,由條件得2=r,整理得4d2=3r2. 所以6a2=3a2+3(a-1)2,解得a=.選C.] 2.(2018·徐州模擬)如圖2-5-1,已知圓心坐標(biāo)為M(,1)的圓M與x軸及直線(xiàn)y=x均相切,切點(diǎn)分別為A,B,另一圓N與圓M相切,且與x軸及直線(xiàn)y=x均相切,切點(diǎn)分別為C,D. 圖2-5-1 (1)
14、求圓M與圓N的方程; (2)過(guò)點(diǎn)B作MN的平行線(xiàn)l,求直線(xiàn)l被圓N截得的弦長(zhǎng). [解] (1)由于圓M與∠BOA的兩邊相切,故M到OA,OB的距離相等,則M在∠BOA的平分線(xiàn)上,同理,N也在∠BOA的平分線(xiàn)上,即O,M,N三點(diǎn)共線(xiàn),且直線(xiàn)ON為∠BOA的平分線(xiàn),因?yàn)镸(,1),所以M到x軸的距離為1,即圓M的半徑為1,所以圓M的方程為(x-)2+(y-1)2=1. 設(shè)圓N的半徑為r,連接AM,CN,如圖所示,則Rt△OAM∽R(shí)t△OCN,得=,即=,解得r=3,OC=3,所以圓N的方程為(x-3)2+(y-3)2=9. (2)由對(duì)稱(chēng)性可知,所求弦長(zhǎng)為過(guò)點(diǎn)A的MN的平行線(xiàn)被圓N截得的
15、弦長(zhǎng),此弦所在直線(xiàn)的方程為y=(x-),即x-y-=0,圓心N到該直線(xiàn)的距離d==,故弦長(zhǎng)為2=. 1.(2016·全國(guó)卷Ⅱ)圓x2+y2-2x-8y+13=0的圓心到直線(xiàn)ax+y-1=0的距離為1,則a=( ) A.- B.- C. D.2 A [將圓的方程化為標(biāo)準(zhǔn)方程,根據(jù)點(diǎn)到直線(xiàn)距離公式求解. 圓x2+y2-2x-8y+13=0的標(biāo)準(zhǔn)方程為(x-1)2+(y-4)2=4,由圓心到直線(xiàn)ax+y-1=0的距離為1可知=1,解得a=-,故選A.] 2.(2018·全國(guó)卷Ⅲ)直線(xiàn)x+y+2=0分別與x軸,y軸交于A,B兩點(diǎn),點(diǎn)P在圓(x-2)
16、2+y2=2上,則△ABP面積的取值范圍是( ) A.[2,6] B.[4,8] C.[,3] D.[2,3] A [由題意知圓心的坐標(biāo)為(2,0),半徑r=,圓心到直線(xiàn)x+y+2=0的距離d==2,所以圓上的點(diǎn)到直線(xiàn)的最大距離是d+r=3,最小距離是d-r=.易知A(-2,0),B(0,-2),所以|AB|=2,所以2≤S△ABP≤6.故選A.] 3.(2014·全國(guó)卷Ⅱ)設(shè)點(diǎn)M(x0,1),若在圓O:x2+y2=1上存在點(diǎn)N,使得∠OMN=45°,則x0的取值范圍是( ) A.[-1,1] B. C.[-,] D. A [如圖,過(guò)點(diǎn)M作⊙O的切線(xiàn),切點(diǎn)為N
17、,連接ON.M點(diǎn)的縱坐標(biāo)為1,MN與⊙O相切于點(diǎn)N.
設(shè)∠OMN=θ,則θ≥45°,即sin θ≥,即≥.
而ON=1,∴OM≤.
∵M(jìn)為(x0,1),
∴≤,
∴x≤1,
∴-1≤x0≤1,
∴x0的取值范圍為[-1,1].]
4.(2015·全國(guó)卷Ⅰ)一個(gè)圓經(jīng)過(guò)橢圓+=1的三個(gè)頂點(diǎn),且圓心在x軸的正半軸上,則該圓的標(biāo)準(zhǔn)方程為_(kāi)_______.
2+y2= [由橢圓的標(biāo)準(zhǔn)方程可求出其四個(gè)頂點(diǎn)的坐標(biāo),由圓心在x軸的正半軸上知該圓過(guò)上、下頂點(diǎn)和右頂點(diǎn).
由題意知a=4,b=2,上、下頂點(diǎn)的坐標(biāo)分別為(0,2),(0,-2),右頂點(diǎn)的坐標(biāo)為(4,0).由圓心在x軸的正半軸上知圓過(guò)點(diǎn)(0,2),(0,-2),(4,0)三點(diǎn).設(shè)圓的標(biāo)準(zhǔn)方程為(x-m)2+y2=r2(0
- 溫馨提示:
1: 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 銷(xiāo)售技巧培訓(xùn)課件:接近客戶(hù)的套路總結(jié)
- 20種成交的銷(xiāo)售話(huà)術(shù)和技巧
- 銷(xiāo)售技巧:接近客戶(hù)的8種套路
- 銷(xiāo)售套路總結(jié)
- 房產(chǎn)銷(xiāo)售中的常見(jiàn)問(wèn)題及解決方法
- 銷(xiāo)售技巧:值得默念的成交話(huà)術(shù)
- 銷(xiāo)售資料:讓人舒服的35種說(shuō)話(huà)方式
- 汽車(chē)銷(xiāo)售績(jī)效管理規(guī)范
- 銷(xiāo)售技巧培訓(xùn)課件:絕對(duì)成交的銷(xiāo)售話(huà)術(shù)
- 頂尖銷(xiāo)售技巧總結(jié)
- 銷(xiāo)售技巧:電話(huà)營(yíng)銷(xiāo)十大定律
- 銷(xiāo)售逼單最好的二十三種技巧
- 銷(xiāo)售最常遇到的10大麻煩
- 銷(xiāo)售資料:銷(xiāo)售10大黃金觀念
- 銷(xiāo)售資料:導(dǎo)購(gòu)常用的搭訕?lè)椒?/a>