2022高考數學“一本”培養(yǎng)專題突破 限時集訓14 導數的綜合應用 文

上傳人:xt****7 文檔編號:105989816 上傳時間:2022-06-13 格式:DOC 頁數:4 大?。?5.50KB
收藏 版權申訴 舉報 下載
2022高考數學“一本”培養(yǎng)專題突破 限時集訓14 導數的綜合應用 文_第1頁
第1頁 / 共4頁
2022高考數學“一本”培養(yǎng)專題突破 限時集訓14 導數的綜合應用 文_第2頁
第2頁 / 共4頁
2022高考數學“一本”培養(yǎng)專題突破 限時集訓14 導數的綜合應用 文_第3頁
第3頁 / 共4頁

下載文檔到電腦,查找使用更方便

9.9 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《2022高考數學“一本”培養(yǎng)專題突破 限時集訓14 導數的綜合應用 文》由會員分享,可在線閱讀,更多相關《2022高考數學“一本”培養(yǎng)專題突破 限時集訓14 導數的綜合應用 文(4頁珍藏版)》請在裝配圖網上搜索。

1、2022高考數學“一本”培養(yǎng)專題突破 限時集訓14 導數的綜合應用 文 1.(2018·太原模擬)設函數f(x)=ax2ln x+b(x-1)(x>0),曲線y=f(x)過點(e,e2-e+1),且在點(1,0)處的切線方程為y=0. (1)求a,b的值; (2)證明:當x≥1時,f(x)≥(x-1)2; (3)若當x≥1時,f(x)≥m(x-1)2恒成立,求實數m的取值范圍. [解] (1)函數f(x)=ax2ln x+b(x-1)(x>0), 可得f′(x)=2axln x+ax+b, 因為f′(1)=a+b=0,f(e)=ae2+b(e-1)=e2-e+1, 所以a=1,

2、b=-1. (2)證明:f(x)=x2ln x-x+1, 設g(x)=x2ln x+x-x2(x≥1), g′(x)=2xln x-x+1,(g′(x))′=2ln x+1>0, 所以g′(x)在[0,+∞)上單調遞增, 所以g′(x)≥g′(1)=0, 所以g(x)在[0,+∞)上單調遞增, 所以g(x)≥g(1)=0,所以f(x)≥(x-1)2. (3)設h(x)=x2ln x-x-m(x-1)2+1, h′(x)=2xln x+x-2m(x-1)-1, 由(2)中知x2ln x≥(x-1)2+x-1=x(x-1), 所以xln x≥x-1,所以h′(x)≥3(x-1

3、)-2m(x-1), ①當3-2m≥0即m≤時,h′(x)≥0, 所以h(x)在[1,+∞)單調遞增, 所以h(x)≥h(1)=0,成立. ②當3-2m<0即m>時, h′(x)=2xln x+(1-2m)(x-1), (h′(x))′=2ln x+3-2m, 令(h′(x))′=0,得x0=e>1, 當x∈[1,x0)時,h′(x)<h′(1)=0, 所以h(x)在[1,x0)上單調遞減,所以h(x)<h(1)=0,不成立. 綜上,m≤. 2.(2017·天津高考)設a,b∈R,|a|≤1.已知函數f(x)=x3-6x2-3a(a-4)x+b,g(x)=exf(x).

4、 (1)求f(x)的單調區(qū)間; (2)已知函數y=g(x)和y=ex的圖象在公共點(x0,y0)處有相同的切線, ①求證:f(x)在x=x0處的導數等于0; ②若關于x的不等式g(x)≤ex在區(qū)間[x0-1,x0+1]上恒成立,求b的取值范圍. [解] (1)由f(x)=x3-6x2-3a(a-4)x+b,可得 f′(x)=3x2-12x-3a(a-4)=3(x-a)[x-(4-a)]. 令f′(x)=0,解得x=a或x=4-a. 由|a|≤1,得a<4-a. 當x變化時,f′(x),f(x)的變化情況如下表: x (-∞,a) (a,4-a) (4-a,+∞) f′

5、(x) + - + f(x)    所以, f(x)的單調遞增區(qū)間為(-∞,a),(4-a,+∞),單調遞減區(qū)間為(a,4-a). (2)①證明:因為g′(x)=ex(f(x)+f′(x)), 由題意知 所以 解得 所以f(x)在x=x0處的導數等于0. ②因為g(x)≤ex,x∈[x0-1,x0+1],且ex>0, 所以f(x)≤1. 又因為f(x0)=1,f′(x0)=0, 所以x0為f(x)的極大值點,由(1)知x0=a. 另一方面,由于|a|≤1,故a+1<4-a. 由(1)知f(x)在(a-1,a)內單調遞增,在(a,a+1)內單調遞減,故

6、當x0=a時,f(x)≤f(a)=1在[a-1,a+1]上恒成立,從而g(x)≤ex在[x0-1,x0+1]上恒成立. 由f(a)=a3-6a2-3a(a-4)a+b=1, 得b=2a3-6a2+1,-1≤a≤1. 令t(x)=2x3-6x2+1,x∈[-1,1],所以t′(x)=6x2-12x. 令t′(x)=0,解得x=2(舍去)或x=0. 因為t(-1)=-7,t(1)=-3,t(0)=1, 所以,t(x)的值域為[-7,1]. 所以,b的取值范圍是[-7,1]. 3.設函數f(x)=x3+ax2+bx+c. (1)求曲線y=f(x)在點(0,f(0))處的切線方程;

7、 (2)設a=b=4,若函數f(x)有三個不同零點,求c的取值范圍; (3)求證:a2-3b>0是f(x)有三個不同零點的必要而不充分條件. [解] (1)由f(x)=x3+ax2+bx+c,得f′(x)=3x2+2ax+b.因為f(0)=c,f′(0)=b,所以曲線y=f(x)在點(0,f(0))處的切線方程為y=bx+c. (2)當a=b=4時,f(x)=x3+4x2+4x+c, 所以f′(x)=3x2+8x+4. 令f′(x)=0,得3x2+8x+4=0,解得x=-2或x=-. f(x)與f′(x)在區(qū)間(-∞,+∞)上的情況如下: x (-∞,-2) -2 -

8、 f′(x) + 0 - 0 + f(x)  c  c-  所以當c>0且c-<0時,存在x1∈(-4,-2),x2∈,x3∈, 使得f(x1)=f(x2)=f(x3)=0. 由f(x)的單調性知,當且僅當c∈時,函數f(x)=x3+4x2+4x+c有三個不同零點. (3)證明:當Δ=4a2-12b<0時,f′(x)=3x2+2ax+b>0,x∈(-∞,+∞), 此時函數f(x)在區(qū)間(-∞,+∞)上單調遞增, 所以f(x)不可能有三個不同零點. 當Δ=4a2-12b=0時,f′(x)=3x2+2ax+b只有一個零點,記作x0. 當x∈(-∞,x

9、0)時,f′(x)>0,f(x)在區(qū)間(-∞,x0)上單調遞增; 當x∈(x0,+∞)時,f′(x)>0,f(x)在區(qū)間(x0,+∞)上單調遞增. 所以f(x)不可能有三個不同零點. 綜上所述,若函數f(x)有三個不同零點,則必有Δ=4a2-12b>0. 故a2-3b>0是f(x)有三個不同零點的必要條件. 當a=b=4,c=0時,a2-3b>0,f(x)=x3+4x2+4x=x(x+2)2只有兩個不同零點, 所以a2-3b>0不是f(x)有三個不同零點的充分條件. 因此a2-3b>0是f(x)有三個不同零點的必要而不充分條件. 4.(2018·蘭州模擬)已知函數f(x)=+l

10、n x在(1,+∞)上是增函數,且a>0. (1)求a的取值范圍; (2)若b>0,試證明<ln<. [解] (1)f′(x)=-+=, 因為在(1,+∞)上f′(x)≥0,且a>0, 所以ax-1≥0,即x≥,所以≤1,即a≥1. 故a的取值范圍為[1,+∞). (2)證明:因為b>0,a≥1,所以>1, 又f(x)=+ln x在(1,+∞)上是增函數, 所以f>f(1),即+ln>0, 化簡得<ln, ln<等價于ln-=ln-<0, 令g(x)=ln(1+x)-x(x∈(0,+∞)), 則g′(x)=-1=<0, 所以函數g(x)在(0,+∞)上為減函數, 所以g=ln-=ln-<g(0)=0,即ln<. 綜上,<ln<,得證.

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
5. 裝配圖網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關資源

更多
正為您匹配相似的精品文檔
關于我們 - 網站聲明 - 網站地圖 - 資源地圖 - 友情鏈接 - 網站客服 - 聯系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網版權所有   聯系電話:18123376007

備案號:ICP2024067431-1 川公網安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對上載內容本身不做任何修改或編輯。若文檔所含內容侵犯了您的版權或隱私,請立即通知裝配圖網,我們立即給予刪除!

五月丁香婷婷狠狠色,亚洲日韩欧美精品久久久不卡,欧美日韩国产黄片三级,手机在线观看成人国产亚洲