《江蘇省蘇州市第五中學(xué)2020屆高考數(shù)學(xué) 專題講練三 基本不等式及應(yīng)用(無(wú)答案)》由會(huì)員分享,可在線閱讀,更多相關(guān)《江蘇省蘇州市第五中學(xué)2020屆高考數(shù)學(xué) 專題講練三 基本不等式及應(yīng)用(無(wú)答案)(3頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、高三數(shù)學(xué)專題講座之三 基本不等式及應(yīng)用
命題趨勢(shì)與復(fù)習(xí)策略:
基本不等式作為高考C級(jí)知識(shí)點(diǎn),是每年高考必考的一個(gè)重要知識(shí)點(diǎn),但它主要作為工具來(lái)用,而且主要用于求一些最值問(wèn)題。
使用基本不等式時(shí),務(wù)必要注意看清基本不等式成立的條件是否具備?尤其是要看清等號(hào)能否成立?在解答題中使用時(shí),必須要交代等號(hào)成立的條件(即說(shuō)明何時(shí)取等號(hào))。
對(duì)于一些復(fù)雜的問(wèn)題,使用基本不等式時(shí)往往要做以下一些工作:(1)分類討論;(2)等價(jià)變形(目標(biāo)可以使用基本不等式);(3)消元化歸等。
真題回放:
(2020) 在平面直角坐標(biāo)系中,過(guò)坐標(biāo)原點(diǎn)的一條直線與函數(shù)的圖象交于、
兩點(diǎn),則線段長(zhǎng)的最小值是
2、 ▲ .
(2020) 17.(2020年江蘇省14分)如圖,建立平面直角坐標(biāo)系,軸在地平面上,軸垂直于地平面,單位長(zhǎng)度為1千米.某炮位于坐標(biāo)原點(diǎn).已知炮彈發(fā)射后的軌跡在方程表示的曲線上,其中與發(fā)射方向有關(guān).炮的射程是指炮彈落地點(diǎn)的橫坐標(biāo).(1)求炮的最大射程;(2)設(shè)在第一象限有一飛行物(忽略其大小),其飛行高度為3.2千米,試問(wèn)它的橫坐標(biāo)不超過(guò)多少時(shí),
炮彈可以擊中它?請(qǐng)說(shuō)明理由.
(2020)
14. 若△的內(nèi)角滿足,則的最小值是 .
19. 已知函數(shù),其中e是自然對(duì)數(shù)的底數(shù).
(1)證明:是R上的偶函數(shù);
(2)若關(guān)于的不等式≤
3、在上恒成立,求實(shí)數(shù)的取值范圍;
(3)已知正數(shù)滿足:存在,使得成立. 試比較與的大小,并證明你的結(jié)論.
應(yīng)用基本不等式求最值題型與解法歸類:
1.已知,則函數(shù)的最大值是________
同步練:函數(shù)的最小值等于________
2.雙曲線的離心率為2,則的最小值為_(kāi)_______
3.若成等差數(shù)列,成等比數(shù)列,則的取值范圍是______
4.已知正實(shí)數(shù)滿足,則的最小值是________
5.若,且,則的最小值為_(kāi)____________
6.設(shè)為實(shí)數(shù),若,則的最大值是_______________
同步練:設(shè)實(shí)數(shù)滿足,則的取值范圍是___________
4、____
7.若三角形的三個(gè)內(nèi)角的弧度數(shù)分別為,則的最小值是_____________
8.設(shè),則的最小值等于______________
同步練:設(shè)正實(shí)數(shù)滿足,則的最小值是_________
9.若,則的最小值等于______________
10.若,且,則的最小值為_(kāi)_____
11.已知關(guān)于的一元二次不等式的解集為,則的最小值是________________
同步練:已知關(guān)于的一元二次不等式的解集是,則
的最小值等于________
12.在中,分別是角的對(duì)邊,且
,則的最大值是______________
應(yīng)用基本不等式求最值的應(yīng)用
1.若對(duì)任意,不等式恒成立,則實(shí)數(shù)的最小值是______.
2.已知:x>y>0,且xy=1,若x2+y2≥a(x-y)恒成立,則實(shí)數(shù)a的取值范圍是_____.
同步練:設(shè),若恒成立,則實(shí)數(shù)的最大值為_(kāi)_____________
3.若,則的最小值是___________
4.已知為正實(shí)數(shù),且滿足,若對(duì)任意滿足條件的,都有不等式
恒成立,則實(shí)數(shù)的取值范圍是__________