《(京津魯瓊專用)2020版高考數(shù)學(xué)二輪復(fù)習(xí) 第二部分 專題三 立體幾何 第2講 空間點、線、面的位置關(guān)系練典型習(xí)題 提數(shù)學(xué)素養(yǎng)(含解析)》由會員分享,可在線閱讀,更多相關(guān)《(京津魯瓊專用)2020版高考數(shù)學(xué)二輪復(fù)習(xí) 第二部分 專題三 立體幾何 第2講 空間點、線、面的位置關(guān)系練典型習(xí)題 提數(shù)學(xué)素養(yǎng)(含解析)(9頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、第2講 空間點、線、面的位置關(guān)系
一、選擇題
1.(2019·合肥市第一次質(zhì)量檢測)平面α外有兩條直線a,b,它們在平面α內(nèi)的投影分別是直線m,n,則下列命題正確的是( )
A.若a⊥b,則m⊥n
B.若m⊥n,則a⊥b
C.若m∥n,則a∥b
D.若m與n相交,則a與b相交或異面
解析:選D.對于選項A,當(dāng)直線a,b相交,且所在平面與平面α垂直時,直線m,n重合,故A不正確;對于選項B,不妨在正方體ABCD-A1B1C1D1中考慮,取面對角線AB1,AD1,其所在直線分別記為a,b,其在平面ABCD上的投影分別為AB,AD,記為m,n,此時m⊥n,但a與b不垂直,故B不正
2、確;對于選項C,不妨在正方體ABCD-A1B1C1D1中考慮,取面對角線AB1,CD1,其所在直線分別記為a,b,其在平面ABCD上的投影分別為AB,CD,記為m,n,此時m∥n,但a與b不平行,故C不正確;對于選項D,若m與n相交,則a與b不可能平行,只能是相交或異面,故D正確,選D.
2.(2019·長春市質(zhì)量監(jiān)測(一))在正方體ABCD-A1B1C1D1中,直線A1C1與平面ABC1D1所成角的正弦值為( )
A.1 B.
C. D.
解析:選D.由題意畫出圖形如圖所示,取AD1的中點為O,連接OC1,OA1,易知OA1⊥平面ABC1D1,所以∠A1C1O是直線
3、A1C1與平面ABC1D1所成的角,在Rt△OA1C1 中,A1C1=2OA1,所以sin∠A1C1O==.故選D.
3.如圖,在三棱錐D-ABC中,若AB=CB,AD=CD,E是AC的中點,則下列命題中正確的是( )
A.平面ABC⊥平面ABD
B.平面ABD⊥平面BCD
C.平面ABC⊥平面BDE,且平面ACD⊥平面BDE
D.平面ABC⊥平面ACD,且平面ACD⊥平面BDE
解析:選C.因為AB=CB,且E是AC的中點,所以BE⊥AC,同理,DE⊥AC,由于DE∩BE=E,于是AC⊥平面BDE.因為AC?平面ABC,所以平面ABC⊥平面BDE.又AC?平面ACD,所
4、以平面ACD⊥平面BDE.故選C.
4.(2019·江西省五校協(xié)作體試題)如圖,圓錐的底面直徑AB=4,高OC=2,D為底面圓周上的一點,且∠AOD=,則直線AD與BC所成的角為( )
A. B.
C. D.
解析:選B.如圖,過點O作OE⊥AB交底面圓于E,分別以O(shè)E,OB,OC所在直線為x,y,z軸建立空間直角坐標(biāo)系,因為∠AOD=π,所以∠BOD=,則D(,1,0),A(0,-2,0),B(0,2,0),C(0,0,2),=(,3,0),=(0,-2,2),所以cos〈,〉==-,則直線AD與BC所成的角為,故選B.
5.如圖,在矩形ABCD中,AB=,BC=1,
5、將△ACD沿AC折起,使得D折起后的位置為D1,且D1在平面ABC上的射影恰好落在AB上,在四面體D1ABC的四個面中,有n對平面相互垂直,則n等于( )
A.2 B.3
C.4 D.5
解析:選B.
如圖,設(shè)D1在平面ABC上的射影為E,連接D1E,則D1E⊥平面ABC,
因為D1E?平面ABD1,
所以平面ABD1⊥平面ABC.
因為D1E⊥平面ABC,BC?平面ABC,
所以D1E⊥BC,又AB⊥BC,D1E∩AB=E,
所以BC⊥平面ABD1,
又BC?平面BCD1,
所以平面BCD1⊥平面ABD1,
因為BC⊥平面ABD1,AD1?平面ABD1,
所以
6、BC⊥AD1,又CD1⊥AD1,BC∩CD1=C,
所以AD1⊥平面BCD1,又AD1?平面ACD1,
所以平面ACD1⊥平面BCD1.
所以共有3對平面互相垂直.故選B.
6.(多選)如圖,在正方體ABCD-A1B1C1D1中,點P在線段BC1上運動,則下列判斷中正確的是( )
A.平面PB1D⊥平面ACD1
B.A1P∥平面ACD1
C.異面直線A1P與AD1所成角的范圍是
D.三棱錐D1-APC的體積不變
解析:選ABD.對于A,根據(jù)正方體的性質(zhì),有DB1⊥平面ACD1,又DB1?平面PB1D,則平面PB1D⊥平面ACD1,故A正確;對于B,連接A1B,A1C
7、1,易證明平面BA1C1∥平面ACD1,又A1P?平面BA1C1,所以A1P∥平面ACD1,故B正確;對于C,當(dāng)P與線段BC1的兩端點重合時,A1P與AD1所成角取最小值,當(dāng)P與線段BC1的中點重合時,A1P與AD1所成角取最大值,故A1P與AD1所成角的范圍是,故C錯誤;對于D,V三棱錐D1-APC=V三棱錐C-AD1P,因為點C到平面AD1P的距離不變,且△AD1P的面積不變,所以三棱錐C-AD1P的體積不變,故D正確.故選ABD.
二、填空題
7.(2019·沈陽市質(zhì)量監(jiān)測(一))如圖,在正方體ABCD-A1B1C1D1中,下面結(jié)論中正確的是________.(寫出所有正確結(jié)論的序號
8、)
①BD∥平面CB1D1;
②AC1⊥平面CB1D1;
③異面直線AC與A1B成60°角;
④AC1與底面ABCD所成角的正切值是.
解析:對于①,BD∥B1D1,BD?平面CB1D1,B1D1?平面CB1D1,所以BD∥平面CB1D1,①正確;對于②,因為AA1⊥平面A1B1C1D1,所以AA1⊥B1D1,連接A1C1,又A1C1⊥B1D1,所以B1D1⊥平面AA1C1,所以B1D1⊥AC1,同理B1C⊥AC1,所以AC1⊥平面CB1D1,②正確;對于③,易知AC∥A1C1,異面直線AC與A1B所成角為∠BA1C1,連接BC1,又△A1C1B為等邊三角形,所以∠BA1C1=6
9、0°,異面直線AC與A1B成60°角,③正確;對于④,AC1與底面ABCD所成角的正切值是==≠,故④不正確.故正確的結(jié)論為①②③.
答案:①②③
8.(2019·武漢市調(diào)研測試)在棱長為1的正方體ABCD-A1B1C1D1中,點A關(guān)于平面BDC1的對稱點為M,則M到平面A1B1C1D1的距離為________.
解析:法一:建立如圖所示的空間直角坐標(biāo)系,正方體的棱長為1,在正方體ABCD-A1B1C1D1下面補一個棱長為1的正方體ABCD-A2B2C2D2,連接A2C2,B2D2,AC2,設(shè)B2D2∩A2C2=E,連接CE交AC2于M(即A關(guān)于平面BDC1的對稱點),易得M,所以點M到
10、平面A1B1C1D1的距離為1-=.
法二:依題意,點M在平面ACC1A1上,建立如圖所示的平面直角坐標(biāo)系,由已知得A,C1,直線OC1的方程為y=x,其斜率為,
因為點A關(guān)于直線OC1的對稱點為M,設(shè)M(a,b),
所以,解得,
所以點M到直線A1C1的距離為1-=,
所以點A關(guān)于平面BDC1的對稱點M到平面A1B1C1D1的距離為.
答案:
9.在長方體ABCD-A1B1C1D1中,AB=AD=4,AA1=2.過點A1作平面α與AB,AD分別交于M,N兩點,若AA1與平面α所成的角為45°,則截面A1MN面積的最小值是________,此時AM=________.
11、
解析:如圖,過點A作AE⊥MN,連接A1E,因為A1A⊥平面ABCD,所以A1A⊥MN,所以MN⊥平面A1AE,所以A1E⊥MN,平面A1AE⊥平面A1MN,所以∠AA1E為AA1與平面A1MN所成的角,所以∠AA1E=45°,在Rt△A1AE中,因為AA1=2,所以AE=2,A1E=2,在Rt△MAN中,由射影定理得ME·EN=AE2=4,由基本不等式得MN=ME+EN≥2=4,當(dāng)且僅當(dāng)ME=EN,即E為MN的中點時等號成立,所以截面A1MN面積的最小值為×4×2=4.因為AM2+AN2=MN2,所以AM=2.
答案:4 2
三、解答題
10.如圖,在三棱錐A-BCD中,AB⊥AD
12、,BC⊥BD,平面ABD⊥平面BCD,點E、F(E與A、D不重合)分別在棱AD、BD上,且EF⊥AD.
求證:(1)EF∥平面ABC;
(2)AD⊥AC.
證明:(1)在平面ABD內(nèi),因為AB⊥AD,EF⊥AD,
所以EF∥AB.
又因為EF?平面ABC,AB?平面ABC,
所以EF∥平面ABC.
(2)因為平面ABD⊥平面BCD,
平面ABD∩平面BCD=BD,
BC?平面BCD且BC⊥BD,
所以BC⊥平面ABD.
因為AD?平面ABD,所以BC⊥AD.
又因為AB⊥AD,BC∩AB=B,AB?平面ABC,BC?平面ABC,
所以AD⊥平面ABC.
又因為AC?
13、平面ABC,
所以AD⊥AC.
11.如圖所示,已知AB⊥平面ACD,DE⊥平面ACD,△ACD為等邊三角形,AD=DE=2AB,F(xiàn)為CD的中點.
求證:(1)AF∥平面BCE;
(2)平面BCE⊥平面CDE.
證明:(1)如圖,取CE的中點G,
連接FG,
BG.
因為F為CD的中點,
所以GF∥DE且GF=DE.
因為AB⊥平面ACD,DE⊥平面ACD,所以AB∥DE,
所以GF∥AB.
又因為AB=DE,所以GF=AB.
所以四邊形GFAB為平行四邊形,則AF∥BG.
因為AF?平面BCE,BG?平面BCE,
所以AF∥平面BCE.
(2)因為△A
14、CD為等邊三角形,F(xiàn)為CD的中點,
所以AF⊥CD.
因為DE⊥平面ACD,AF?平面ACD,
所以DE⊥AF.
又CD∩DE=D,
所以AF⊥平面CDE.
因為BG∥AF,所以BG⊥平面CDE.
又因為BG?平面BCE,
所以平面BCE⊥平面CDE.
12.如圖1,在直角梯形ABCD中,AD∥BC,AB⊥BC,BD⊥DC,點E是BC邊的中點,將△ABD沿BD折起,使平面ABD⊥平面BCD,連接AE,AC,DE,得到如圖2所示的幾何體.
(1)求證:AB⊥平面ADC;
(2)若AD=1,AC與其在平面ABD內(nèi)的正投影所成角的正切值為,求點B到平面ADE的距離.
解:
15、(1)證明:因為平面ABD⊥平面BCD,平面ABD∩平面BCD=BD,
又DC⊥BD,DC?平面BCD,
所以DC⊥平面ABD.
因為AB?平面ABD,
所以DC⊥AB.
又因為折疊前后均有AD⊥AB,
且DC∩AD=D,
所以AB⊥平面ADC.
(2)由(1)知DC⊥平面ABD,
所以AC在平面ABD內(nèi)的正投影為AD,
即∠CAD為AC與其在平面ABD內(nèi)的正投影所成的角.
依題意知tan ∠CAD==,
因為AD=1,所以DC=.
設(shè)AB=x(x>0),則BD=,
易知△ABD∽△DCB,所以=,
即=,解得x=,
故AB=,BD=,BC=3.
由于AB⊥平面ADC,
所以AB⊥AC,又E為BC的中點,所以由平面幾何知識得AE==,
同理DE==,
所以S△ADE=×1× =.
因為DC⊥平面ABD,所以VA-BCD=CD·S△ABD=.
設(shè)點B到平面ADE的距離為d,
則d·S△ADE=VB-ADE=VA-BDE=VA-BCD=,
所以d=,即點B到平面ADE的距離為.
- 9 -