喜歡就充值下載吧。。。資源目錄里展示的全都有,,下載后全都有,,請放心下載,【QQ:1304139763 可咨詢交流】=====================
喜歡就充值下載吧。。。資源目錄里展示的全都有,,下載后全都有,,請放心下載,【QQ:1304139763 可咨詢交流】=====================
喜歡就充值下載吧。。。資源目錄里展示的全都有,,下載后全都有,,請放心下載,【QQ:1304139763 可咨詢交流】=====================
中國地質(zhì)大學長城學院
本科畢業(yè)設(shè)計外文資料翻譯
系 別:工程技術(shù)系
專 業(yè):機械設(shè)計制造及其自動化
姓 名:羅金華
學 號:05208323
2012年 3 月 5 日
Mechanical Engineering in the Information Age
In the early 1980s, engineers thought that massive research would be needed to speed up product development. As it turns out, less research is actually needed because shortened product development cycles encourage engineers to use available technology for use。in a new product is risky and prone to failure. Taking short steps is a safer and usually more successfully approach to product development.
Shorter product development cycles are also beneficial in an engineering world in which both capital and labor are global. People who can design and manufacture various products can be found anywhere in the world, but containing a new idea is hard. Geographic distance is no longer a barrier to others finding out about your development six months into the process. If you’ve got a short development cycle, the situation is not catastrophic —as long as you maintain you lead. But if you’re in the midst of a six year development process and a competitor gets wind of your worker, the project could be in more serious trouble.
The idea that engineers need to creat a new design to solve every problem is quickly becoming obsolete. The first step in the modern design process is to browse the Internet or other information systems to see if someone else has already a new transmission, or a heat exchanger that is close to what you need. Through these information system, you may discover that someone already has manufacturing drawings, numerical control tapes ,and everything else required to manufature your product. Engineers can then focus their professional competence on unsolved problems. In talckling such problems, the availability of wokstations and access to the information hignway dramatically enhance the capability of the engineering team and its productivity. These information age tools can give the team access to massive databases of material properties, standards, technologies, and successful designs. Such protested designs can be downloaded for direct use or quickly modified to meet specific needs. Remote manufacturing, in which productions are sent out over a network, is also possible. You could end up with a virtual company where you don’t have to see any hardware. When the product is completed you can direct the manufaturer to drop-ship it to your customer. Periodic visits to the customer can be made to ensure that the product you designed working according to the specification. Although all of the developments won’t apply equally to every company, the potential is there. Custom design used to be left to small company. Big companies sneered at it—they hated the idea of dealing with niche markets small-valum custom solutions. “Here is my product,” one of the big companies would say:“This is the best we can make it —you ought like it. If you don’t, there’s smaller company down the street that will work on your problem.”
Today, nearly every market is a niche market, because customers are selective. If you ignore the potential for tailoring your product to specific customers’ needs, you will lose the major part of your market share. Since these niche markets are transient, your company needs to be in a positiong to respond to them quickly. The emgergence of niche markets and design on demand has altered the way engineers conduct research. Today, research is commonly directed toward sovling particular problems. Although this situstion is probably temporary, much uncommitted technology, developed at government expense or written off by major corporationgs, is available today at very low cost. Following modest modificationgs, such technology can ofen be used directly in product development, which allows many organizations to avoid the expense of an extensive research effort. Once the technology is free of major obstacles, the research effort can focus on overcoming the barriers to commercializationg rather than on pursuing new and interesting, but undefined, alternatives. When view in this prospective, engineering research must focus primarily on removing the barriers to rapid commercilizationg of known technologies. Much of this effort must address quality and reliability concerns, which are foremost in the minds of today’s consumers. Clearly, a reputationg for poor quality is synonymous with bad business. Everything possible—including thorough inspection at the end of the manufacturing line and automatic replacement of defective products—must be dong to assure that the customer receives a properly functionging product.
Research has to focus on the cost benefit of fators such as reliability. As reliability increases, manufanturing costs and the final costs of the system will decrease. Having 30%junk at the end of a production line not only costs a forturn but also creats an opportunity for a competitor to take your idea and sell it to your customers. Central to the process of improving reliability and lowing costs is the intensive and widespread use of design software, which allows engineers to speed up every stage of the design process. Shortening each stage, however ,may not sufficiently reduce the time required for the entire process. Therefore, attention must also be devoted to concurrent engineering software with shared databases can be accessed by all members of the design team. As we move more fully into the Information Age, success will require that the engineer possess some unique knowledge of and experience in both the development and the management of technology. Success will require broad knowledge and skills as well as expertise in some key technologies and disciplines; it also require a keen awareness of the social and economic factors at work in the marketplace. Increasingly, in the future, routin problems will not justify heavry engineering expenditures, and engineers will be expected to work cooperatively in solving more challenging , more demanding problems in substantially less time. We have begun a new phase in the practice of engineering. It offers great promise and excitement as more and more problem-solving capability is placed in the hands of the computerized and wired engineer. To assure success, the capability of our tools and the unquenched thirst for better products and systems must be matched by the joy of creation that marks all great engineering endeavors. mechanical engineering is a great profession, and it will become even greater as we make the most of the opportunities offered by the Information Age.
Many engineers have as their function the designing of products that are to be brought into reality through the processing or fabrication of materials. In this capacity they are a key fator in the material selection-manufaturing procedure. A design engineer, better than any other person, should know what he or she wants a design to accomplish. He knows what assumptions he has made about service loads and requirements, what service environment the product must withstand, and what appearance he wants the final product to have. In order to meet these requirements he must select and specify the material(s)to be used. In most cases, in order to utilize the material and to enable the product to have the desired form, he knows that certain manufacturing processes will have to be employed. In many instances, the selection of a specific material may dictate what processing must be used. At the same time, when certain processes are to be used, the design may have to be modified in order for the process to be utilized effectively and economically. Certainly dimensional tolerances can dictate the processing. In any case, in the sequence of converting the design into reality, such decisions must be made by someone. In most distances they can be made most effectively at the design stage, by the designer if he has a reasonably adequate knowledge concerning materials and manufacturing processes. Otherwise, decisions may be made that will detragt from the effectiveness of the product, or the product may be needlessly costly. It is thus apparent that design engineers are a vital fator in the manufacturing process, and it is indeed the company if they design for producibility—that is, for effient production. Manufacturing engineers select and coordinate specific processes and equipment to be used, or supervise and manage their use. Some design special tooling that is used so that standard machines can be utilized in producing special products. These engineers must have a broad knowledge of machine and process capabilities and of materials, so that desired operations can be done effectively and efficiently without overloading or damaging machines and without adversely affecting the materials being processed. These manufacturing engineers also play an important role in manufacturing. A relatively small group of engineers design the machines and equipment used in manufacturing. They obviously are design engineers and, relative to their products, they have the same concerns of the interrelationship of design, materials, and manufacturing processes. However, they have an even greater concern regarding the properties of the materials that their machines are going to process and the interreaction of the materials and the machines.
Still another group of engineers—the materials engineers—devote their major efforts toward developing new and better materials. They, too, must be concerned with how these materials can be processed and with the effects the processing will have on the properties of the materials. Although their roles may be quite different, it is apparent that a large proportion of engineers must concern themselves with the interrelationship between materials and manufacturing processes. Low-cost manufature does not just happen. There is a close and interdependent relationship between the design of a product, selection of materials, selection of processes and equipment, and tooling selection and design. Each of these steps must be carefully considered, planned, and coordinated before manufacturing starts. This lead time, particularly for complicated products, may take months, even years, and the expenditure of large amount of money may be involved. Typically, the lead time for a completely new model of an automobile is about 2 years, for a modern aircraft it may be 4 years.
With the advent of computers and machines that can be controlled by either tapes made by computers or by the computers themselves, we are entering a new era of production planning. The integration of the design function and the manufacturing function through the computer is called CAD/CAM(computer aided design/computer aided manufacturing). The design is used to determine the manufacturing process planning and the programming information for the manufacturing processes themselves. Detailed drawing can also be made from the central data base used for the design and manufature, and programs can be generated to make the parts as needed. In addition, extensive computer aidedtesting and inspection (CATI)of the manufactured parts is taking place. There is no doubt that this trend will continue at ever-accelerating rates as computers become chesper and smarter.
信息時代的機械工程
在80年代的初期,工程師們曾認為要加快產(chǎn)品的研制開發(fā),必須進行大量的研究工作。結(jié)果實際上只進行了較少量的研究工作,這就是因為產(chǎn)品開發(fā)周期的縮短,促使工程師們盡可能的利用現(xiàn)有的技術(shù)。研制開發(fā)一種創(chuàng)新性的技術(shù)并將其應用在新產(chǎn)品上,是有風險的,并且易于招致失敗。在產(chǎn)品開發(fā)工程中采用較少的步驟是一種安全的和易于成功的方法。
對于資金和人力都處于全球的環(huán)境中的工程界而言,縮短產(chǎn)品研制開發(fā)周期也是有益的,能夠設(shè)計和制造各種產(chǎn)品的人可以在世界各地找到。但是,具有創(chuàng)新新思想的人則比較難找。但是如果你正處于一個長達6年的研制開發(fā)過程的中期,一個競爭對手了解到你的研究工作的一些信息,這個項目將面臨比較大的麻煩。
工程師們在解決任何問題時都需要進行新的設(shè)計這種觀念很快的就過時了。在現(xiàn)在設(shè)計中的第一步是瀏覽因特網(wǎng)或是其他的系統(tǒng),看其他的人是否是設(shè)計了一種類似于你所需要的產(chǎn)品,諸如出動裝置或是換熱器等。通過這些信息系統(tǒng),你可能發(fā)現(xiàn)有些人已經(jīng)有了制造圖紙,數(shù)控紙帶和制造那你的產(chǎn)品的所需要的其他所有東西。這樣,工程師們就可以把他們的職業(yè)技能集中在上尚未解決的問題上。在解決這類問題時,利用工作站和進行信息高速公路可以大大曾強工作小組的能力和效率。這些信息時代的工具可以使工程小組利用大規(guī)模的數(shù)據(jù)庫。數(shù)據(jù)庫中有材料性能,標準,技術(shù)和成功的設(shè)計方案等信息。這些經(jīng)過驗證的設(shè)計可以通過下載可以直接的應用,或是通過對其進行快速,簡單的改進來滿足特定的要求,將產(chǎn)品技術(shù)要求通過網(wǎng)絡(luò)送出去的遠程制造也是可以的。你可以建立一個沒有任何加工設(shè)備的虛擬公司,你可以指示制造商,在產(chǎn)品加工完成后,將其直接送給你的客戶。定期訪問你的客戶可以保證你設(shè)計的產(chǎn)品按照設(shè)計要求進行工作。盡管這些研制開發(fā)方式不可能對每個公司都完全的適應,但是這種可能性是存在的,過去客戶設(shè)計的產(chǎn)品通常由小的公司制造,大公司不屑于制造這種產(chǎn)品,他們討厭與特殊的定向產(chǎn)品市場,或是客戶設(shè)計的小批量產(chǎn)品打交道。就這就是我們的產(chǎn)品,一家大公司這樣說,這是我們能夠制造出來的最好的產(chǎn)品,亦應該喜歡它,如果你不喜歡,順這條走有一家小公司,它會按你的要求去做。
今天,因為客戶們有較大的選擇余地,幾乎所有的市場都是特殊特定向產(chǎn)品市場,如果你不能使你的產(chǎn)品滿足某些特定客戶的要求,你將失去市場份額紅的一大部分,或是失去全部份額。由于這些定向產(chǎn)品市場是經(jīng)常變化的,你的公司應該對時常的變化做出快速的反應。定向產(chǎn)品市場和根據(jù)客戶的要求進行設(shè)計這種現(xiàn)象的出現(xiàn)改變了工程師研究工作的方式。今天,研究工作通常是針對解決特定問題進行的。現(xiàn)在許多由政府資助或者由打工公司出資開發(fā)的技術(shù)可以在非常低的成本下被自由使用,盡管這種情況可能是暫時的。在對這些技術(shù)進行適當?shù)母倪M后,他們通常能夠被直接的用于產(chǎn)品開發(fā),這使得許多的公司可以節(jié)省昂貴的研究經(jīng)費,在主要的是技術(shù)障礙被克服后,研究工作應該主要致力于產(chǎn)品的商品化方方面,而不是開發(fā)新的,有趣的,不確定的替換品。采用上述觀點看問題,工程研究應該致力于消除將已知技術(shù)快速商品化的障礙。工作的重點是產(chǎn)品的質(zhì)量和可靠的性,這些在當今的顧客的頭腦中是最重要的。很明顯,一個質(zhì)量差的聲譽是一個不好企業(yè)的同義詞。企業(yè)應該盡最大的努力唉保證顧客得到合格的產(chǎn)品,這個努力包括在生產(chǎn)線的終端對產(chǎn)品進行嚴格的檢驗和自動更換有缺陷的產(chǎn)品。
研究工作應該著重考慮諸如可靠性等因素對成本帶來的益處,當可靠性提高時,制造成本和系統(tǒng)的最終成本將會降低。如果在生產(chǎn)線的終端產(chǎn)生了30%的廢品,這不僅會浪費金錢,也會給你的競爭對手創(chuàng)造一個利用你的想法制造產(chǎn)品,并將其銷售給你的客戶的良機。提高可靠性和降低成本這個過程的關(guān)鍵是深入,廣泛地利用設(shè)計軟件。設(shè)計軟件可以使工程師們加快每一階段的設(shè)計工作。然而,僅僅縮短每一階段的設(shè)計時間,可能不會顯著地縮短整個設(shè)計過程的時間。因而必須致力于采用并行工程軟件,這樣可以使所有設(shè)計組的成員都能使用共同的數(shù)據(jù)庫。隨著我們步入信息時代,要取得成功,工程師們在技術(shù)開發(fā)和技術(shù)管理方面都應該具有一些獨特的知識和經(jīng)驗。成功的工程師們不但應該具有寬廣的知識和技能,而且還應該是某些關(guān)鍵技術(shù)或?qū)W科的專家,他們還應該在社會因素和經(jīng)濟因素對市場響方面有敏銳的洞察能力。將來,花在解決日常工程問題上的費用將會減少,工程師們將會在一些更富有挑戰(zhàn)性,更亟待解決的問題上協(xié)同工作,大大縮短解決這些問題所需要的時間。我們已經(jīng)開始了工程實踐的新階段。計算機和網(wǎng)絡(luò)工程師們具有了越來越強的解決問題的能力,這也給他們的工作帶來了很大的希望和喜悅。為了確保成功,我們所使用的工具的性能和對更好的產(chǎn)品與系統(tǒng)的不斷追求應該與標志著在過程方面所有巨大努力的創(chuàng)新工作所帶來的喜悅相適應。機械工程是一個偉大的行業(yè),在我們盡可能多地利用了信息時代所提供的機遇后,它將變得更加偉大。
許多工程師的職責是進行產(chǎn)品設(shè)計,而產(chǎn)品是通過對材料的加工制造而生產(chǎn)出來的。設(shè)計工程師在材料選擇——制造方法等方面起著關(guān)鍵的作用.一個設(shè)計工程師應該比其他的人更清楚地知道他的設(shè)計需要達到什么目的。他知道他對使用載荷和使用要求的假設(shè),產(chǎn)品的使用環(huán)境,產(chǎn)品應該具有的外觀形貌。為了滿足這些要求,他必須選擇和規(guī)定所使用的材料。通常,為了利用材料并使產(chǎn)品具有所期望的形狀,設(shè)計工程師知道應該采用哪些制造方法。在許多情況下,選擇了某種特定材料就可能意味著已經(jīng)確定了某種必須采用的加工方法。同時,當決定采用某種加工方法后,很可能需要對設(shè)計進行修改,以使這種加工方法能夠被有效而經(jīng)某種加工方法后,很可能需要對設(shè)計進行修改,以使這種加工方法能夠被有效而經(jīng)濟地應用。某些尺寸公差可以決定產(chǎn)品的加工方法??傊?在將設(shè)計轉(zhuǎn)變?yōu)楫a(chǎn)品的過程中,必須有人做出這些決定.在大多數(shù)情況下,如果設(shè)計人員在材料和加工方法方面具有足夠的知識,他會在設(shè)計階段做出最為合理的決定。否則,做出的決定可能會降低產(chǎn)品的性能,或則使產(chǎn)品變得過于昂貴。顯然,設(shè)計工程師是制造過程中的關(guān)鍵人物,如果他們能夠進行面向生產(chǎn)(即可以進行高效率生產(chǎn))的設(shè)計,就制造工程師們選擇和調(diào)整所采用的加工方法和設(shè)備,或者監(jiān)督和管理這些加工方法和設(shè)備的使用。一些工程師進行專用工藝裝備的設(shè)計,以使通用機床能夠被用來生產(chǎn)特定的產(chǎn)品。這些工程師們在機床,工藝能力和材料方面必須具有廣泛的知識,以使機器在沒有過載和損壞,而且對被加工材料沒有不良影響的情況下, 更為有效地完成所需要的加工工序。這些制造工程師們在制造業(yè)中也起到重要作用。少數(shù)工程師們設(shè)計在制造業(yè)中使用的機床和設(shè)備。顯然,他們是設(shè)計工程師。而且對于他們的產(chǎn)品而言,他們同樣關(guān)心設(shè)計,材料和制造方法之間的相互關(guān)系。然而,他們更多地關(guān)心他們所設(shè)計的機床將要加工的材料的性能和機床與材料之間的相互作用。
還有另外一些工程師——材料工程師,他們致力于研制新型和更好的材料,他們也應該關(guān)心這些材料的加工方法和加工對這些材料性能的影響。盡管工程師們所起的作用可能有很大的差別,但是,大部分工程師們都必須考慮材料與制造工藝之間的相互關(guān)系。低成本制造并不是自動產(chǎn)生的.在產(chǎn)品設(shè)計, 材料選擇,加工工藝裝備選擇和設(shè)計之間都有著非常密切的相互依賴關(guān)系。這些步驟中的每一個都必須在開始制造前仔細地加以考慮,規(guī)劃和協(xié)調(diào)。這種從產(chǎn)品設(shè)計到實際生產(chǎn)的準備工作,特別是對于復雜產(chǎn)品,可能需要數(shù)月甚至數(shù)年的時間, 并且可能花費很多錢。典型的例子有,對于一種全新的汽車,從設(shè)計到投產(chǎn)所需要的時間大約為2年,而一種現(xiàn)代化飛機則可能需要4年。
隨著計算機和由計算機產(chǎn)生的紙帶與由計算機本身控制的機器的出現(xiàn),我們進入了一個生產(chǎn)計劃的新時代。采用計算機將產(chǎn)品的設(shè)計功能與制造功能集成, 被稱為CAD/CAM(計算機輔助設(shè)計/計算機輔助制造).這種設(shè)計被用來制定加工工藝規(guī)程和提供加工過程本身的編程信息??梢愿鶕?jù)供設(shè)計由于制造用的中心數(shù)據(jù)庫內(nèi)的信息繪制零件圖,需要時可以生成加工這些零件時所使用的程序。此外, 對加工后的零件的計算機輔助試驗與檢測也得到了廣泛的應用。隨著計算機價格的降低和性能的提高,這種趨勢將毫無疑問地得到不斷加速的發(fā)展。
中國地質(zhì)大學長城學院畢業(yè)設(shè)計(論文)任務書
學生姓名
羅金華
學號
05208323
班 級
機制三班
指導教師
王勝曼
職稱
講師
單 位
中國地質(zhì)大學長城學院
畢業(yè)設(shè)計(論文)題目
回轉(zhuǎn)工程鉆機主卷揚的設(shè)計
畢業(yè)設(shè)計(論文)主要內(nèi)容和要求:
回轉(zhuǎn)工程鉆機的主卷揚機是回轉(zhuǎn)鉆機的重要組成部分,主卷揚主要實現(xiàn)鉆桿、水龍頭等部件的起吊工作。
設(shè)計參數(shù):起升重量為1噸,起升速度為0.5m/s , 起升高度為6m.
要求:利用所學的理論知識,學會如何解決實際問題,設(shè)計出規(guī)范化、標準化的圖紙。
畢業(yè)設(shè)計(論文)主要參考資料:
[1] 紀名剛主編.機械設(shè)計(第8版).北京:高等教育出版社,1997.
[2] 孫桓.機械原理(第7版).北京:高等教育出版社,2006.
[3] 羅伯特.機械設(shè)計中的機械零件(第三版). 北京:機械工業(yè)出版社,2004.
[4] 中國機械學會.機械設(shè)計手冊(電子版).北京:電子工業(yè)出版社,2008.
[5] 周紅軍,蔣國盛,張金昌.國產(chǎn)旋挖鉆機市場現(xiàn)狀分析及發(fā)展建議[J].探礦工
[6] 編寫組.起重機設(shè)計手冊[M].天津:機械工業(yè)出版社,1980.
[7] 胡宗武,顧迪民.起重機設(shè)計計算.北京:北京科學技術(shù)出版社,1989.
[8] 陳道南.起重運輸機械.北京:冶金工業(yè)出版社,1998.
[9] 成大先.機械設(shè)計手冊(第五版).北京:化學工業(yè)出版社,2010.
[10] 齒輪手冊編委會.《齒輪手冊》(第二版).北京:機械工業(yè)出版社,2004.
[11] 羅伯特.機械設(shè)計中的機械零件(第三版).北京:機械工業(yè)出版社,2004 .
[12] 徐灝.疲勞強度設(shè)計.北京:機械工業(yè)出版社,1985.
[13] 羅圣國.機械設(shè)計課程設(shè)計指導書(第二版).北京:高等教育出版社,1990.
[14] 龔湘義.機械設(shè)計課程設(shè)計圖冊(第三版),北京:高等教育出版社,1989.
[15]李德玉.《機械工程材料學》,第二版,北京:中國農(nóng)業(yè)出版社,1997年
畢業(yè)設(shè)計(論文)應完成的主要工作:
1. 繪制卷揚機總體裝配圖一張(A0);
2. 繪制卷筒零件圖一張(A1);
3. 繪制齒輪零件圖一張(A2);
4. 繪制心軸零件圖一張(A3)
5. 繪制減速器三軸零件圖一張(A3)
6. 繪制其它零件圖一張(A4)
7. 選擇電動機、聯(lián)軸器、制動器、減速器等部件
8. 設(shè)計說明書一份(正文字數(shù)不少于6000字)
畢業(yè)設(shè)計(論文)進度安排:
序號
畢業(yè)設(shè)計(論文)各階段內(nèi)容
時間安排
備注
搜集資料寫文獻綜述
2012-2-13至2012-2-29
外文翻譯
2012-3-3至2012-3-11
設(shè)計計算
2012-3-13至2012-3-26
繪制圖紙
2012-3-29至2012-4-9
編寫設(shè)計說明書
2012-4-10至2012-4-21
課題信息:
課題性質(zhì): 設(shè)計■ 論文□ ?
課題來源: 教學□ 科研□ 生產(chǎn)□ 其它□
發(fā)出任務書日期: 2011-12-20
指導教師簽名:
年 月 日
教研室意見:
教研室主任簽名:
年 月 日
學生簽名: