喜歡這套資料就充值下載吧。。。資源目錄里展示的都可在線預覽哦。。。下載后都有,,請放心下載,,文件全都包含在內,,【有疑問咨詢QQ:414951605 或 1304139763】
========================================喜歡這套資料就充值下載吧。。。資源目錄里展示的都可在線預覽哦。。。下載后都有,,請放心下載,,文件全都包含在內,,【有疑問咨詢QQ:414951605 或 1304139763】
========================================
大慶石油學院
畢業(yè)設計(論文)任務書
題目 MG100型錨桿鉆機液壓系統(tǒng)設計
專業(yè) 機自03-4 學號030401140407 姓名 刁玉才
主要內容、技術參數、基本要求、主要參考資料等:
1、 主要內容
錨桿鉆機的總體方案設計;
錨桿鉆機的液壓動力裝置設計分析;
錨桿鉆機的液壓系統(tǒng)原理設計分析;
錨桿鉆機的液壓系統(tǒng)的配件與三維布管設計。
2、 技術參數
鉆孔直徑 100~200 mm;
鉆頭轉速 0~80r/min;
鉆頭扭矩 900Nm;
鉆頭行程 2000~2500 mm ;
推力 50~60 kN;
沖擊頻率 2000~2200次/min ;
系統(tǒng)壓力 25MPa;
發(fā)動機 100kW;
行走方式 履帶式;
重量 12000~14000 kg
3、基本要求
設計機器總體、液壓原理圖、液壓配件圖、液壓裝配圖、機器立體圖等,折合0號圖紙5張;
設計計算書40頁;
外文資料翻譯5000字。
4、主要參考資料
相關三維設計與仿真軟件及參考書籍;
相關機械設計手冊、液壓手冊、網上期刊文獻、相關樣本等。
完成期限: 4月9日~6月26日
指導教師簽名:
專業(yè)負責人簽名:
2007年 4月3日
大慶石油學院學生開題報告表
課題名稱
MG100型錨桿鉆機液壓系統(tǒng)設計
課題來源
北京建筑機械化研究院
課題類型
A
指導教師姓名
趙偉民
學生姓名
刁玉才
學 號
030401140407
專 業(yè)
機械設計制造及其自動化
開題報告內容:(調研資料的準備,設計目的、要求、思路與預期成果;任務完成的階段內容及時間安排;完成設計(論文)所具備的條件因素等。)
一 前期調研
鉆孔機械是地下水開采及基本建設基礎施工必不可少的設備, 鉆機產品也隨之進入快速發(fā)展的階段。近年來, 國內的許多廠家相繼生產出各種形式的反循環(huán)鉆機, 應用于全國各地的橋梁、建筑、水利等工程施工過程中。但從現有的國產沖擊反循環(huán)鉆機的使用情況來看, 仍存在一些問題需要認真討論與分析, 并在技術上作出相應的改進和提高, 才能更有利于我國鉆機制造業(yè)的發(fā)展, 并但從現有的國產沖擊反循環(huán)鉆機的使用情況來看,進一步提高我國同類鉆機的設計和制造水平。其中錨桿鉆機是實現錨桿支護技術的重要機械設備,隨著錨桿支護技術的飛速發(fā)展,用于鉆鑿錨桿孔的錨桿鉆機也得到了快速發(fā)展。展望它的發(fā)展,有助于不斷促進錨桿鉆機設備的技術進步,使其更加適應現代支護技術的需要。
以往鉆機的設計研制過程,比較注重鉆機本身的輸出特性,一味通過追求盡可能大的轉速和轉矩來提高鉆機的破巖鉆進能力。但對于單體錨桿鉆機來說,要求體積小,重量輕,因而不能無限止地提高轉速、轉矩和推力。只有最大限度地提高鉆機輸出功率的利用率,即提高破巖鉆削效率,才能在有限的輸出功率下取得較高的鉆進速度。
隨著錨噴支護技術的推廣和應用,作為錨噴施工工具的錨桿鉆機的優(yōu)劣直接影響著錨桿孔施工和生產效率,錨桿鉆機按動力源分電動錨桿鉆機、氣動錨桿鉆機和液壓錨桿鉆機。其中電動錨桿鉆機的輸出特性較差,鉆孔速度低,電機可靠性及防水性存在嚴重問題,尚無良好的推進方式。近期尚難大量用于井下錨桿支護; 國產氣動錨桿鉆機的水平逐步提高,齒輪氣動馬達式已基本能代替進口產品,但玻璃鋼支腿等部分的可靠性應進一步提高;柱塞馬達式錨桿鉆機尚處于小批量生產階段,尚需進一步考核; 液壓錨桿鉆機輸出的扭矩高于氣動錨桿鉆機,與掘進機配套是較優(yōu)越的工作方式。但輸出扭矩仍然偏低,液壓系統(tǒng)容易發(fā)熱。由于以礦物油為工作介質,在煤礦井下使用中存在安全隱患。由于液壓錨桿鉆機具有扭矩大、鉆削破巖性好等特點,從而得到推廣應用。
二 參考文獻
[1]劉忠,龍國鍵,褚福磊,楊國平.國內外液壓沖擊機械的發(fā)展研究 .建筑機械
1993年第9期.
[2]高瀾慶.國外鑿巖(穿孔)設備的發(fā)展動態(tài). 礦山機械.2000年第3期
[3]蔡玲,王慶堅.關于國內鉆機結構改進方向初探. 廣東交通職業(yè)技術學院學報、第4卷 第3期2005年9月
[4]孫正心.對錨桿鉆機研制中幾個問題的探討. 煤炭科學技術. 第27卷 第12期1999年12月
[5]劉道禮,孫菊花,丁福軍,顧兵.工程錨桿鉆機結構的設. 煤礦機電. 2003年第5期
[6]吳剛,杜長龍.沖擊旋轉式錨桿鉆機設計研究. 煤炭技術. 第20卷第9期2001年9月
[7]王吉安. 淺析錨桿鉆機的研制現狀. 煤礦機械.2004年第9期
[8]鄧樂,毋林. 煤礦錨桿鉆機的現狀與發(fā)展方向. 中州煤炭.1995年第期
[9]馮超旭. 機掘巷道錨桿支護技術現狀分析. 煤礦機械.2002年第5期
[10]徐成富. 掘進機錨桿鉆機共泵液壓系統(tǒng)應用. 煤礦機械.第27卷第8期2006年8月
[11]吉軍,原思聰,王發(fā)展. 基于遺傳算法的無法液壓沖擊旋轉型錨桿鉆機動力頭優(yōu)化設計. 煤礦機械.第27卷第11期2006年11月
[12]周明連,秦庚仁,朱家緯. 液壓錨桿鉆機設計. 煤礦機械.第3卷第3期
[13]機械設計手冊. 第4卷.機械工業(yè)出版社.
[14]張利平. 液壓傳動系統(tǒng)及設計. 化學工業(yè)出版社.
三 設計目的
隨著液壓鉆孔機械十幾年的發(fā)展與實踐,日益顯示了其優(yōu)越性,打破了長期以來氣動鉆機的統(tǒng)治地位。與氣動鉆孔機械相比,液壓鉆機鉆孔速度提高兩倍以上,噪聲降低20-25dB,功率消耗降低1/3,消除了工作面的油霧和水汽。近年來國內外液壓鉆孔機械的發(fā)展相當迅速,品種(或型號)不斷增加,更新換代速度也很快。
隨著國民經濟的高速發(fā)展,為滿足地質災害治理及各種基本建設的需要,特別是西部大開發(fā)的進行,大型建筑、高速公路和地質災害治理工程的上馬,特別是三峽工程,小灣、龍灘水電工程等大型水力工程的進行,對巖土錨固鉆機的需求量越來越大,同時對其性能的要求也越來越高。液壓鉆機由于其布置靈活,鉆進參數調整簡易,早已成為國外鉆機廠的主導產品。以往液壓錨桿鉆機,整個體積較大,分體性能不好,造價較高,特別是目前西部大開發(fā)建設中的幾處大型水電工程,其邊坡治理、巖土錨固都是在高邊坡上進行的,有的搭架高達100m。為此,在以往液壓錨桿鉆機的基礎上,研制、開發(fā)MG100型液壓錨固鉆機。
四 設計要求與設計思路
1 設計要求:
錨桿鉆機的總體設計;
錨桿鉆機的液壓系統(tǒng)原理分析與設計;
錨桿鉆機的液壓系統(tǒng)的動力特性分析;
錨桿鉆機的液壓系統(tǒng)的三維布管設計
2 設計思路:
本課題所涉及的錨桿鉆機液壓系統(tǒng)設計是液壓錨桿鉆機的重要組成部分,它意在研究液壓錨桿鉆機的液壓原理與輔助部分,總體方案包括主機和泵站的液壓部分及接頭與管路等。主機的液壓部分主要由液壓馬達、沖擊液缸、主臂液缸、回轉液缸及支腿液缸等組成,液壓泵站主要由液壓泵、溢流閥、油箱和濾油器等組成。液壓馬達、沖擊液缸和支腿作為鉆機的執(zhí)行元件,其中前兩個中一個作旋轉運動,輸出扭矩;一個作直線運動,起到沖擊碎石機加壓的功能,支腿也作直線運動,作為鉆機工作時的支撐。主臂液缸及回轉液缸起到確定鉆進位置及固定鉆桿的功能,通過它們可以實現在固定鉆機底盤的情況下,方便的改變鉆進位置。液壓泵站為液壓系統(tǒng)提供具有一定壓力的液壓油。通過對錨桿鉆機液壓系統(tǒng)設計,進而更好的推進液壓錨桿鉆機的推廣應用。
五 預期成果
設計完成MG100型錨桿鉆機機器總體及液壓原理圖;鉆機中所應用的液壓配件圖;MG100型錨桿鉆機的液壓裝配圖及機器立體圖;完成液壓配件的選型計算;完成設計說明書。
六 任務完成的階段內容及時間安排
4月9日~4月21日 (第1-2周)錨桿鉆機總體設計;
4月22日~5月12日(第3-5周)錨桿鉆機的液壓系統(tǒng)原理分析與設計;
5月13日~6月2日(第6-8周)錨桿鉆機的液壓系統(tǒng)配件圖設計;
6月3日~6月16日(第9-10周)錨桿鉆機的液壓系統(tǒng)三維布管設計;
6月17日~6月30日(第11-12周)論文寫作與整理,準備答辯。
七 完成設計所具備的條件因素
1.通過四年的本科學習已經掌握了基礎和專業(yè)基礎知識,具有一 定的分析和解決問題的能力;
2.較熟練的掌握和運用計算機操作系統(tǒng)以及相關軟件,并正在學習專業(yè)軟件;
3.可以運用所學外語知識查閱外文資料;
4.熟練的運用所學文獻檢索知識查閱有關專業(yè)資料;
5.通過分析討論對所設計的內容有了全面了解。
指導教師簽名: 日期:
1、課題來源:課題來源分為結合實際課題和自擬課題兩種,結合實際課題中來源于科研課題的要填寫確切基金項目、企事業(yè)單位項目,不能寫橫向、縱向課題等。
2、課題類型:A—工程設計;B—科學實驗;C—軟件開發(fā);D—理論研究;E—應用研究。
大慶石油學院本科生畢業(yè)設計(論文)
摘 要
隨著高、重、大建筑的增多,錨桿支護技術應用越來越廣泛,隨之鉆鑿錨孔的錨桿鉆機也得到了快速發(fā)展。
本文針對現有錨桿鉆機存在的堅硬夾層及堅硬圍巖等的不適應問題,在收集、查閱大量資料的基礎上,提出了沖擊旋轉式液壓錨桿鉆機方案,并對其進行設計研究,因錨桿鉆機的機構比較復雜,所以重點放在錨桿鉆機的液壓系統(tǒng)設計。首先,在對沖擊旋轉鉆孔破巖機理進行分析的基礎上,結合沖擊旋轉式液壓錨桿鉆機的總體方案設計,制定出沖擊旋轉式液壓錨桿鉆機的液壓工作原理方案,并對組成液壓系統(tǒng)的各個子系統(tǒng)的原理和特點作了詳細的分析。在此基礎上,對錨桿鉆機的液壓動力裝置和系統(tǒng)原理進行了具體設計,通過計算選取了各主要元件,利用三維設計軟件進行管路連接和系統(tǒng)布置。
關鍵詞:錨桿鉆機;液壓系統(tǒng);回轉沖擊器
Abstract
Suspension roof support technical application increasingly abroad in company with high, weightiness, large structural manifold, came along of the jumbolter with anchor eye too get know clearly instant development.
This text aim at existence jumbolter available stiffness interlining or stiffness wall rock uniform maladjustment problem,set know clearly impact rotary system hydr- aulic pressure jumbolter proposal combine versus his proceed design studies,on the foundation of collection, consult a great amount of information. because of the jumbolter's institution compare intricacy,so emphases lay in jumbolter 'hydraulic system design. First of all,above versus impact rotary boring broken rock mechanism proceed analytic foundation,incorporation of the impact rotary system hydraulic pressure jumbolter 'general planning design,map out impact rotary system hydraulic pressure jumbolter 'hydraulic pressure principle of operation scheme,and combine versus compose hydraulics severalty subsystem theory and point did know clearly detailed analyses. Both that of hereon foundation upper,versus jumbolter hydraulic power unit and system theory proceed know clearly detailed design,through the medium of figure choose know clearly each major component,turn three-dimensional design software proceed ducting connection and system layout to advantage up.
Key words:Anchor drilling;Hydraulic system;Rotatory impactor
大慶石油學院本科生畢業(yè)設計(論文)
目 錄
第1章 緒論…………………………………………………………………………1
1.1 選題的背景、意義及目的……………………………………………1
1.2 國內外研究狀況及分析………………………………………………3
1.3 課題所涉及的內容……………………………………………………7
1.4 本章小結………………………………………………………………7
第2章 錨桿鉆機的總體設計………………………………………………………8
2.1 底盤……………………………………………………………………8
2.2 傳動方式………………………………………………………………8
2.3 鉆進方式………………………………………………………………9
2.4 主臂……………………………………………………………………10
2.5 夾緊機構………………………………………………………………10
2.6 裝卸鉆桿裝置…………………………………………………………11
2.7 本章小結………………………………………………………………12
第3章 鉆機液壓動力裝置設計……………………………………………………14
3.1 傳動設計………………………………………………………………14
3.2 液壓沖擊器設計………………………………………………………17
3.3 本章小結………………………………………………………………23
第4章 錨桿鉆機液壓系統(tǒng)設計分析………………………………………………24
4.1 總體液壓原理圖………………………………………………………24
4.2 原理圖的各部分原理分析……………………………………………25
4.3 本章小節(jié)………………………………………………………………28
第5章 液壓系統(tǒng)配件的計算與選取………………………………………………29
5.1 動力頭加壓馬達………………………………………………………29
5.2 主臂伸縮油缸…………………………………………………………29
5.3 裝卸鉆桿油缸…………………………………………………………30
5.4 變幅油缸………………………………………………………………31
5.5 變角油缸………………………………………………………………32
5.6 支腿油缸………………………………………………………………32
5.7 泵的選取………………………………………………………………33
5.8 本章小結………………………………………………………………34
第6章 整機穩(wěn)定性分……………………………………………………………35
6.1 質量參數………………………………………………………………35
6.2 穩(wěn)定性計算……………………………………………………………36
6.3 本章小結………………………………………………………………38
結論 …………………………………………………………………………………49
參考文獻 ……………………………………………………………………………40
致謝 …………………………………………………………………………………41
II
大慶石油學院2007屆本科畢業(yè)設計MG100型錨桿鉆機液壓系統(tǒng)設計 學生姓名:刁玉才 指導教師:趙偉民教授 課題來源:北京建筑機械化研究院概況鉆孔機械是地下水開采及 基本建設基礎施工必不可少的設備,隨著錨桿支護技術的飛速發(fā)展,用于鉆鑿錨桿孔的錨桿鉆機也得到了快速發(fā)展。目前,錨桿鉆機主要有電動、氣動、液動三種形式。國內外錨桿鉆機的研制現狀 目前國外應用較為普遍的錨桿鉆機主要有風動和目前國外應用較為普遍的錨桿鉆機主要有風動和液壓錨桿鉆機兩種,風動錨桿鉆機有澳大利亞的克萊液壓錨桿鉆機兩種,風動錨桿鉆機有澳大利亞的克萊姆公司姆公司WOMBATWOMBAT型型,瑞典瑞典PRB-300PRB-300型等;液壓錨桿鉆機型等;液壓錨桿鉆機有英國有英國WISPWISP型,澳大利亞型,澳大利亞PROBAMPROBAM型等型等 。特別是澳利。特別是澳利亞在風動錨桿鉆機方面一直保持著較為領先的技術和亞在風動錨桿鉆機方面一直保持著較為領先的技術和產品。產品。我國錨桿鉆機的研究始于我國錨桿鉆機的研究始于2020世紀世紀7070年代末,先后年代末,先后研制過機械支腿式錨桿鉆機,鉆車式錨桿鉆機研制過機械支腿式錨桿鉆機,鉆車式錨桿鉆機,支腿支腿與導軌式液壓錨桿鉆機,支腿式氣動錨桿鉆機與導軌式液壓錨桿鉆機,支腿式氣動錨桿鉆機,非機非機械傳動電動錨桿鉆機,機載式錨桿鉆機等錨桿鉆機。械傳動電動錨桿鉆機,機載式錨桿鉆機等錨桿鉆機。到現在已經有風動、電動、液動三大系列到現在已經有風動、電動、液動三大系列3030多個品種。多個品種。鉆機的技術參數:鉆孔直徑鉆孔直徑 100200 mm;鉆頭轉速鉆頭轉速 080r/min;鉆頭扭矩鉆頭扭矩 900Nm;鉆頭行程鉆頭行程 20002500 mm;推力推力 5060 kN;沖擊頻率沖擊頻率 20002200次次/min;系統(tǒng)壓力系統(tǒng)壓力 25MPa;發(fā)動機發(fā)動機 100kW;行走方式行走方式 履帶式;履帶式;重量重量 1200014000 kg 本課題所涉及的內容通過對上述三種錨桿鉆機的特性分析,對比三種通過對上述三種錨桿鉆機的特性分析,對比三種錨桿鉆機的特點與性能,液壓錨桿鉆機由于有中、錨桿鉆機的特點與性能,液壓錨桿鉆機由于有中、高壓液壓泵站的支持,扭矩的增大有更大的空間,高壓液壓泵站的支持,扭矩的增大有更大的空間,因而液壓錨桿鉆機的應用將越來越廣。所以選取因而液壓錨桿鉆機的應用將越來越廣。所以選取液壓錨桿鉆機。本文通過對錨桿鉆機液壓系統(tǒng)設液壓錨桿鉆機。本文通過對錨桿鉆機液壓系統(tǒng)設計,進而更好的推進液壓錨桿鉆機的推廣應用。計,進而更好的推進液壓錨桿鉆機的推廣應用。所涉及的主要內容有:鉆機的總體設計;液壓系所涉及的主要內容有:鉆機的總體設計;液壓系統(tǒng)原理分析與設計;液壓系統(tǒng)的動力特性分析;統(tǒng)原理分析與設計;液壓系統(tǒng)的動力特性分析;液壓系統(tǒng)的三維布管設計以及相關論文的撰寫。液壓系統(tǒng)的三維布管設計以及相關論文的撰寫。鉆進總體設計底盤:由于鉆機要適用于野外底盤:由于鉆機要適用于野外及比較泥濘的巷道作業(yè),所及比較泥濘的巷道作業(yè),所以選用履帶形底盤。以選用履帶形底盤。鉆進方式:錨桿鉆機的鉆方式鉆進方式:錨桿鉆機的鉆方式主要有旋轉式、沖擊式和沖主要有旋轉式、沖擊式和沖擊旋轉式為了能夠適應在堅擊旋轉式為了能夠適應在堅硬巖石層鉆進,選用沖擊旋硬巖石層鉆進,選用沖擊旋轉的鉆進方式,右圖為三種轉的鉆進方式,右圖為三種沖擊旋轉形式。沖擊旋轉形式。換鉆桿裝置:為了能夠實現自動換換鉆桿,參考美國阿換鉆桿裝置:為了能夠實現自動換換鉆桿,參考美國阿特拉斯公司的錨桿鉆機所用的換鉆裝置進行設計,該特拉斯公司的錨桿鉆機所用的換鉆裝置進行設計,該裝置類似于彈夾式,也是通過它的整體旋轉將鉆桿送裝置類似于彈夾式,也是通過它的整體旋轉將鉆桿送到指定位置來實現換鉆桿的。它的整體旋轉采用棘輪、到指定位置來實現換鉆桿的。它的整體旋轉采用棘輪、棘爪嚙合方式,通過油缸活塞帶動棘爪移動來推棘爪嚙合方式,通過油缸活塞帶動棘爪移動來推動棘輪旋轉,從實現其動棘輪旋轉,從實現其整體旋轉,將鉆桿送到整體旋轉,將鉆桿送到指定位置。利用棘輪、指定位置。利用棘輪、棘爪嚙合的方式,可以棘爪嚙合的方式,可以實現棘輪的定角度轉動實現棘輪的定角度轉動使鉆桿的送進精度更高使鉆桿的送進精度更高主臂:主臂多采用箱形結構,分為整體式和可伸主臂:主臂多采用箱形結構,分為整體式和可伸縮式兩種,整體式載荷分布均勻,能夠承受較縮式兩種,整體式載荷分布均勻,能夠承受較大的載荷,但當底盤固定時鉆機的作業(yè)范圍?。淮蟮妮d荷,但當底盤固定時鉆機的作業(yè)范圍??;可伸縮式雖然承受載荷能力沒有整體式好,但可伸縮式雖然承受載荷能力沒有整體式好,但底盤固定時鉆機的作業(yè)范圍大,能夠適應多種底盤固定時鉆機的作業(yè)范圍大,能夠適應多種工況要求,因此選用可伸縮式主臂。工況要求,因此選用可伸縮式主臂。夾緊機構:因為鉆機的鉆夾緊機構:因為鉆機的鉆孔直徑為孔直徑為100-200mm,為了能夠實現對不同直為了能夠實現對不同直徑鉆柱的夾緊,選用如徑鉆柱的夾緊,選用如右圖所示的夾緊機構右圖所示的夾緊機構。液壓動力裝置設計傳動設計傳動設計 錨桿鉆機的動力裝置采用液壓傳動,動力是由液壓馬錨桿鉆機的動力裝置采用液壓傳動,動力是由液壓馬達傳出通過齒輪傳動到鉆柱上,最終實現鉆進。鉆進達傳出通過齒輪傳動到鉆柱上,最終實現鉆進。鉆進方式采用沖擊旋轉式,它的工作原理為:由液壓馬達方式采用沖擊旋轉式,它的工作原理為:由液壓馬達馬達驅動內外層鉆柱旋轉鉆進,由高頻沖擊油缸驅動馬達驅動內外層鉆柱旋轉鉆進,由高頻沖擊油缸驅動內層鉆柱振動,產生沿鉆進方向沖擊力,使巖石產生內層鉆柱振動,產生沿鉆進方向沖擊力,使巖石產生裂紋甚至破碎,從而實現沖擊碎巖的作用。這樣就易裂紋甚至破碎,從而實現沖擊碎巖的作用。這樣就易于內外層鉆桿旋轉切屑巖石,從而實現有效地鉆進。于內外層鉆桿旋轉切屑巖石,從而實現有效地鉆進。液壓沖擊器上圖為沖擊器的運動簡圖,利用簡單的力學方程即上圖為沖擊器的運動簡圖,利用簡單的力學方程即Fw=A(P1-P2),初算液壓沖擊器活塞及活塞桿的直徑,初算液壓沖擊器活塞及活塞桿的直徑為為d=50mm,D=86mm。近似看作活塞在沖擊過程中。近似看作活塞在沖擊過程中為勻加速運動,沖程為勻加速運動,沖程s=10mm,沖擊頻率為,沖擊頻率為20002200次次/分。分。進一步計算得出:進一步計算得出:流量流量q=2.824L/s;儲油量儲油量 V=0.78L。液壓原理設計分析總體液壓原理圖總體液壓原理圖下圖為車體內部布線圖原理的各部分分析一、動力頭驅動馬達一、動力頭驅動馬達如圖,由平衡閥、變量馬達和液壓減速機組如圖,由平衡閥、變量馬達和液壓減速機組成。油口成。油口P1和和P2與主油路換向閥相接,油口與主油路換向閥相接,油口S與油箱連接。其中與油箱連接。其中,平衡閥主要起到過載保護平衡閥主要起到過載保護的作用;馬達轉速可以通過減速機內部控制,的作用;馬達轉速可以通過減速機內部控制,也可以通過人為強制,其型號為依頓盤配流也可以通過人為強制,其型號為依頓盤配流4000系列馬達。系列馬達。加壓馬達該馬達主要應實現,在鉆進過程該馬達主要應實現,在鉆進過程中對動力頭加壓和在換鉆桿過程中對動力頭加壓和在換鉆桿過程中提升動力頭,因此它應具有自中提升動力頭,因此它應具有自動鎖緊功能,該功能是通過進油動鎖緊功能,該功能是通過進油控制一個單作用油缸來實現的??刂埔粋€單作用油缸來實現的。高壓油在流入馬達之前分流,一高壓油在流入馬達之前分流,一路流入馬達,另一路通過梭閥油路流入馬達,另一路通過梭閥油缸,馬達工作時,油缸活塞縮回,缸,馬達工作時,油缸活塞縮回,解除自鎖;否則,活塞在彈簧作解除自鎖;否則,活塞在彈簧作用下伸出,實現自鎖,為了施工用下伸出,實現自鎖,為了施工過程中的安全,在油路中安裝平衡閥過程中的安全,在油路中安裝平衡閥。雙作用平衡閥在液壓系統(tǒng)中多處都用到了平在液壓系統(tǒng)中多處都用到了平衡閥,圖示為它的原理圖,圖衡閥,圖示為它的原理圖,圖中中P和和T為平衡閥的進口;為平衡閥的進口;A和和B為平衡閥的出口為平衡閥的出口。主要起到。主要起到液壓鎖和過載保護的功能。液液壓鎖和過載保護的功能。液壓鎖功能:當系統(tǒng)停止對壓鎖功能:當系統(tǒng)停止對P、T口供油時,在單向閥的作用下,口供油時,在單向閥的作用下,油液不能流回,即起到油液不能流回,即起到 液壓鎖液壓鎖緊的功能;緊的功能;過載保護功能過載保護功能;當外當外力過大或急劇變化使得力過大或急劇變化使得A、B口口壓力大于溢流閥調定壓力時,壓力大于溢流閥調定壓力時,溢流閥溢流,即起到過載保護溢流閥溢流,即起到過載保護的功能。的功能。支腿多路閥如圖,該部分的換向閥采用力士樂公司的差裝如圖,該部分的換向閥采用力士樂公司的差裝多路閥,插裝三位五通電磁換向閥,能夠實現多路閥,插裝三位五通電磁換向閥,能夠實現自動泄油功能,液壓油通過自動泄油功能,液壓油通過P 口流入多路閥,口流入多路閥,在閥塊中各電磁閥均處于中位時,油液通過兩在閥塊中各電磁閥均處于中位時,油液通過兩位兩通電磁換向閥的上位即通路經位兩通電磁換向閥的上位即通路經T口返回油箱;口返回油箱;當電磁換向閥的上位或下位工作時進油路的一當電磁換向閥的上位或下位工作時進油路的一部分液壓油通過梭閥作用于兩位兩通換向閥,部分液壓油通過梭閥作用于兩位兩通換向閥,使其下位工作,即自動泄油回路斷開,保證該使其下位工作,即自動泄油回路斷開,保證該部分液壓系統(tǒng)的正常工作,圖中的兩個溢流閥部分液壓系統(tǒng)的正常工作,圖中的兩個溢流閥均起到過載保護的功能。均起到過載保護的功能。結論本文通過對錨桿鉆機國內外發(fā)展狀況的分析,了解本文通過對錨桿鉆機國內外發(fā)展狀況的分析,了解了目前錨桿鉆機的主要分類,在對其優(yōu)缺點進行分了目前錨桿鉆機的主要分類,在對其優(yōu)缺點進行分析對比的基礎上,選取液壓錨桿鉆機進行設計。析對比的基礎上,選取液壓錨桿鉆機進行設計。在鉆機總體方案的確定中,通過方案對比的方式分在鉆機總體方案的確定中,通過方案對比的方式分別對鉆機的履帶、傳動方式、鉆進方式、主臂和夾別對鉆機的履帶、傳動方式、鉆進方式、主臂和夾緊機構進行了選型及設計。緊機構進行了選型及設計。在液壓動力裝置的分析與設計中,了解了液壓振動在液壓動力裝置的分析與設計中,了解了液壓振動沖擊器的形式及其工作原理,對比選取配流式液壓沖擊器的形式及其工作原理,對比選取配流式液壓沖擊器。并且對主要參數進行計算。沖擊器。并且對主要參數進行計算。在液壓原理部分中,通過對錨桿鉆機液壓原理圖的在液壓原理部分中,通過對錨桿鉆機液壓原理圖的分析,介紹了鉆機液壓系統(tǒng)的主要執(zhí)行元件及其輔分析,介紹了鉆機液壓系統(tǒng)的主要執(zhí)行元件及其輔助元件,并對原理圖中的各部分進行了設計分析。助元件,并對原理圖中的各部分進行了設計分析。在液壓系統(tǒng)中主要元件的選取上,通過相關手冊的在液壓系統(tǒng)中主要元件的選取上,通過相關手冊的公式進行計算,并在力士樂、林德等公司的樣本及公式進行計算,并在力士樂、林德等公司的樣本及手冊中進行選取。手冊中進行選取。最后通過計算、對比整機的傾翻力矩與反傾翻力矩最后通過計算、對比整機的傾翻力矩與反傾翻力矩進行整機穩(wěn)定性分析。進行整機穩(wěn)定性分析。歡迎各位老師提出寶貴意見!大慶石油學院本科生畢業(yè)設計(論文)
Anchor drilling
Document Type and Number:
United States Patent 4201270
Abstract:
An operator controlled roof bolter with a flexible shaft drill and a roof bolt inserter for drilling and inserting a roof bolt into an unsupported roof of a mine while the operator is positioned at an outby station under a supported roof. The flexible shaft roof drill is constrained to a frame of the roof bolter for pivoting movement between a rest position and a working position. The roof bolt inserter is mounted on a slide for linear movement and limited rotational movement between a retracted position and an extended position for positioning a roof bolt held by the inserter into registration with a hole drilled by the roof drill.
Inventors:
Ribich, William A. (Lexington, MA, US)
Hug, Hans A. (Weston, MA, US)
Bellows, Alfred H. (Belmont, MA, US)
Application Number:
906237
Filing Date: 05/15/1978
Publication Date: 05/06/1980
Primary Class: 173/193
Other Classes: 81/57.25, 81/57.41, 173/46, 173/52, 405/259.1, 405/303.
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to the supporting of underground mine roofs and, more particularly, is directed towards an apparatus for drilling holes in the roof of a mine and for inserting roof bolts into such holes.
2. Description of the Prior Art
In underground mines, the roof is supported by roof bolts which are inserted into holes drilled into the roof strata. An apparatus for drilling holes having a depth substantially greater than the height of the mine passageway in which the apparatus is located is described in U.S. Pat. No. 4,057,115. An apparatus for inserting roof bolts into the drilled holes is described in U.S. Pat. No. 4,003,233.
Although progress has been made in roof bolting apparatus, roof bolting remains one of the most hazardous mining occupations for several reasons. The operator inserting the roof bolt is stationed inby at an area in which the roof is unsupported. It is the operator's task to drill and to insert roof bolts in this unsupported area. Consequently, the operator is exposed to the hazard of having sections of the unsupported roof fall on him. Mine personnel have been injured by flying objects from the exposed rotating drill steel and tools employed to tighten the roof bolts. Workers are also exposed to the risk of being caught on and pulled into the rotating portions of the mining apparatus.
Attempts to develop roof bolters which are capable of remotely installing bolts have been met with limited success even for the simplest case when the bolts are shorter than the height of the mine passageway. Such attempts have resulted in complex and costly systems which suffer from low reliability due to many moving parts and continual readjustment. A need has arisen for an improved roof bolting system which does not suffer from the heretofore mentioned disadvantages.
What is claimed is:
1. An operator controlled roof bolting system for drilling holes in the roof strata of a mine and for inserting roof bolts into the drilled holes while the operator is in a safe area, said system comprising:
(a) a frame with an outby operator's station;
(b) roof drill means for drilling a hole in the roof strata, said roof drill means mounted to said frame for pivotal movement about an axis between a rest position and a working position;
(c) first means operatively connected to said roof drill means and said frame for pivotally moving said roof drill means about said axis between said rest position and said working position:
(d) roof bolt inserter means for inserting a roof bolt into a hole drilled in the roof strata by said roof drill means, said roof bolt inserter means mounted to said frame for movement between a retracted position and an extended position, said roof bolt inserter means including slide means mounted to said frame for pivoting movement about said axis; and
(e) second means operatively connected to said roof bolt inserter means and said frame for moving said roof bolt inserter means between said retracted position and said extended position, said roof bolt inserter means proximate to said operator's station when in said retracted position, whereby the operator can place a roof bolt in said roof bolt inserter means while remaining at said operator's station.
2. The system as claimed in claim 1 wherein said roof drill means is a flexible shaft roof drill.
3. The system as claimed in claim 1, wherein said roof drill means is a longer-than-seam height drill.
4. The system as claimed in claim 1 wherein said roof bolt inserter means includes a working head mounted to said slide means, said slide means pivotally mounted to said frame, third means operatively connected to said slide means and said frame for pivotally moving said slide means about said axis.
5. The system as claimed in claim 1, including a plate for pushing a roof bolt inserted into the drilled hole and plate means for moving said plate into engagement with the roof bolt, said plate means connected to said frame and said plate.
6. An operator controlled roof bolting system for drilling holes in the roof strata of a mine and for installing roof bolts into the drilled holes while the operator is in a safe or supported area, said system comprising: (a) a frame;
(b) roof drill means for drilling a hole in the roof strata, said roof drill means configured to drill a hole having a depth which is greater than the height of the mine, said roof drill means mounted to said frame for pivoting movement about an axis between a rest position and a working position;
(c) first actuator means operatively connected to said roof drill means and said frame for pivotally moving said roof drill means about said axis;
(d) roof bolt inserter means for inserting a roof bolt into a hole drilled in the roof strata by said roof drill means, said roof bolt inserter means including slide means and a working head, said slide means mounted to said frame for pivoting movement about said axis, said slide means linearly movable between a retracted position and an extended position, said working head carried by said slide means and linearly movable between said retracted position and said extended position, said working head configured to insert a roof bolt having a length which is no longer than the height of the mine into a hole drilled by said roof drill means, said drill means and said roof bolt inserter means independently movable about said axis;
(e) second actuator means operatively connected to said slide means for linearly moving said slide means between said retracted position and said extended position;
(f) third actuator means operatively connected to said slide means and said frame for pivotally moving said working head about said axis;
(g) said roof bolt inserter proximate to said operator's station when in said retracted position, whereby the operator can place a roof bolt in said roof bolt inserter while remaining at said operator's station.
7. The system as claimed in claim 6 wherein said roof drill means includes a drill and an arm, said drill carried by said arm, fourth actuator means operatively connected to said drill and said arm for moving said drill relative to said arm, said drill constrained for substantially vertical movement relative to said arm, said arm pivotally mounted to said frame for movement about said axis.
8. The system as claimed in claim 7 including torquer means mounted to said working head, said torquer means configured to engage the inserted roof bolt and to tighten the roof bolt to a perdetermined torque.
9. An operator controlled roof bolting system for drilling holes in the roof strata of a mine and for inserting roof bolts into the drilled holes while the operator is in a safe area, said system comprising:
(a) a frame with an outby operator's station;
(b) roof drill means for drilling a hole in the roof strata, said roof drill means pivotally mounted to said frame for pivotal movement about a first axis between a rest position and a working position;
(c) first means operatively connected to said roof drill means and said frame for pivotally moving said roof drill means about said first axis between said rest position and said working position;
(d) roof bolt inserter means for inserting a roof bolt into a hole drilled in the roof strata by said roof drill means, said roof bolt inserter means slidably mounted to said frame for slidable movement between a retracted position and an extended position; said roof bolt inserter means including a working head and slide means, said slide means pivotally mounted to said frame;
(e) second means operatively connected to said roof bolt inserter means and said frame for slidably moving said roof bolt inserter means between said retracted position and said extended position; and
(f) third means operatively connected to said slide means and said frame for pivotally moving said slide means about said first axis;
(g) said roof bolt inserter means proximate to said operator's station when in said retracted position, whereby the operator can place a roof bolt in said roof bolt inserter means while remaining at said operator's station.
10. An operator controlled roof bolting system for drilling holes in the roof strata of a mine and for inserting roof bolts into the drilled holes while the operator is in a safe area, said system comprising:
(a) a frame with an outby operator'station;
(b) a flexible shaft roof drill for drilling a hole in the roof strata, said roof drill mounted to said frame for movement between a rest position and a working position;
(c) first means operatively connected to said roof drill and said frame for moving said roof drill between said rest position and said working position;
(d) roof bolt inserter means for inserting a roof bolt into a hole drilled in the roof strata by said roof drill, said roof bolt inserter means mounted to said frame for movement between a retracted position and an extended position;
(e) second means operatively connected to said roof bolt inserter means and said frame for moving said roof bolt inserter means between said retracted position and said extended position, said roof bolt inserter means proximate to said operator's station when in said retracted position, whereby the operator can place a roof bolt in said roof bolt inserter means while remaining at said operator's station;
(f) third means mounted to said frame; and
(g) a plate mounted to said third means, said plate configured to push a roof bolt inserted into the drilled hole, said third means moving said plate into engagement with the roof bolt.
SUMMARY OF THE INVENTION
It is an object of the present invention to provide a roof bolting system which does not suffer from the heretofore mentioned disadvantages and limitations. A further object of the invention is to provide a simple and reliable roof bolting system for remote drilling and insertion of roof bolts, particularly bolts that are longer than the height of the mine passage.
Another object of the invention is to provide a simple and reliable roof bolting system with an outby operator's station for remote drilling and insertion of roof bolts in which an inserter is moved rearwardly towards an operator for reception of the bolt rather than having the bolt fed forwardly to the inserter from the operator. Such a system includes a rugged mechanism for moving the inserter which is simpler and more reliable than bolt feed systems.
Yet another object of the invention is to provide an operator controlled roof bolter with a flexible shaft roof drill or other longer than seam height drill and a roof bolt inserter for drilling and inserting a roof bolt into an unsupported roof of a mine while the operator is outby and is positioned under a supported roof. The flexible shaft roof drill is mounted to a frame of the roof bolter and is constrained for pivoted movement between a rest position and a working position. The roof bolt inserter is configured to bend and feed roof bolts having a length that is greater than the height of the mine passageway. A head of the roof bolt inserter is mounted on a slide for linear movement and limited rotational movement between a retracted position and an extended position in order to align the advancing roof bolt with a hole drilled in the roof strata of the mine by the flexible shaft roof drill. In the retracted position, the inserter is in place to receive a roof bolt from an operator without requiring the operator to leave a supported or safe area. The hole is drilled when the roof drill is in its working position. Upon completion of the drilling step, the roof drill is pivoted to its rest position and the roof bolter inserter is moved to its extended position. A controller is provided for aligning the roof bolt and the drilled hole. A hydraulically actuated plate pushes the inserted roof bolt further into the drilled hole. A torquer engages the inserted roof bolt and tightens the roof bolt to effect the roof support.
5