4座微型客貨兩用車設(shè)計(后驅(qū)動橋、后懸架設(shè)計)【說明書+CAD】
4座微型客貨兩用車設(shè)計(后驅(qū)動橋、后懸架設(shè)計)【說明書+CAD】,說明書+CAD,4座微型客貨兩用車設(shè)計(后驅(qū)動橋、后懸架設(shè)計)【說明書+CAD】,微型,客貨兩用車,設(shè)計,驅(qū)動,懸架,說明書,仿單,cad
畢 業(yè) 設(shè) 計(論文)任 務(wù) 書
(指導(dǎo)老師填表)
填表時間: 08年3月29日
學(xué)生姓名
李超鋒
專業(yè)
班級
車輛04級041班
指導(dǎo)
老師
李水良/馬心坦
課題
類型
工程設(shè)計
設(shè)計(論文)題目
4座微型客貨兩用車設(shè)計(后驅(qū)動橋、后懸架設(shè)計)
主要研
究內(nèi)容
4座客貨兩用車的基本參數(shù)為:發(fā)動機擬選為JL462Q或相近系列,最高車速為95Km/h,最小轉(zhuǎn)彎半徑≤4.5米,乘員人數(shù)4人,載重量0.5噸,檔位數(shù)4+1。
參照上述基本參數(shù),查閱汽車設(shè)計相關(guān)標準,參照現(xiàn)有車型的整體布局參數(shù)(網(wǎng)上可以查到,如昌河CH10011AXEi廂貨、長安火車系列等)、亞洲牌客貨兩用車底盤實物、長劍牌轎車實物(車輛實驗室整車陳列室內(nèi)),進行必要的調(diào)研和資料查閱,設(shè)計出合適現(xiàn)代社會需要的客貨兩用車。
主要技
術(shù)指標
(或研究目標)
完成客貨兩用車的后驅(qū)動橋、后懸架設(shè)計。繪制總和不少于3張的零號圖紙的結(jié)構(gòu)設(shè)計圖、裝配圖和零件圖,其中應(yīng)包含用計算機繪制(或手工繪制)的具有中等難度的1號圖紙一張以上。
按要求格式獨立撰寫不少于12000字的設(shè)計說明書,應(yīng)有中英文摘要(摘要不少于400字),全部用計算機打?。ň幣乓蟮胶幽峡萍即髮W(xué)教務(wù)處網(wǎng)站查:《河南科技大學(xué)畢業(yè)設(shè)計(論文)指導(dǎo)手冊》),查閱與課題相關(guān)的文獻資料15篇以上,獨立完成總量10000以上印刷符號與本人相關(guān)的外文資料譯文。
速度計劃
(6~7周)全組集體討論,確定總體方案。每個學(xué)生確定自己的設(shè)計內(nèi)容與繪圖數(shù)量。在進行調(diào)研、搜集、分析資料的基礎(chǔ)上,完成開題報告(4月14日交)。
(8~9周)整理本設(shè)計內(nèi)容的相關(guān)數(shù)據(jù)資料,進行必要的理論計算,擬出說明書草稿,搜集相關(guān)外文資料并翻譯。
(10~11周)完成主要總圖設(shè)計。(5月5日下午至少完成一張零號草圖)。
(12~13周)完成零、部件圖設(shè)計,并完成機繪圖。(5月23下午之前完成)。
(14~15周)要求整理、編寫設(shè)計說明書。
( 16周)整理圖紙及全部設(shè)計文件,準備上交。(6月13日下午四點交全部設(shè)計資料)。
( 17周 )審閱、評閱設(shè)計資料,答辯,評定成績。
主要參
考文獻
汽車構(gòu)造; 汽車理論;
汽車設(shè)計; 汽車車身設(shè)計結(jié)構(gòu)與設(shè)計;
車身造型; 汽車車型手冊;
有關(guān)汽車行業(yè)雜志; 機械零件設(shè)計手冊;
汽車相關(guān)行業(yè)標準(院資料室)
研究所(教研室)主任簽字:
年 月 日
河南科技大學(xué)畢業(yè)設(shè)計(論文)開題報告
(學(xué)生填表)
院系:車輛與動力工程學(xué)院 2008年4月 8日
課題名稱
4座微型客貨兩用車設(shè)計(后驅(qū)動橋、后懸設(shè)計)
學(xué)生姓名
李超鋒
專業(yè)班級
車輛041
課題類型
工程設(shè)計
指導(dǎo)教師
李水良
馬心坦
職稱
課題來源
生產(chǎn)
1. 設(shè)計(或研究)的依據(jù)與意義
汽車是20世紀最具代表性的人文景觀,也是21世紀最具影響力的社會事物。
而作為汽車組成部分的后驅(qū)動橋、后懸架的設(shè)計對汽車的性能影響是相當(dāng)大的,對汽車工業(yè)的發(fā)展也具有深遠的意義。
本次設(shè)計的車型為4座客貨兩用車,屬于輕型車系列。由于該車型是大批量生產(chǎn),使用條件較好,且后懸架的結(jié)構(gòu)形式定為非獨立懸架,故本次設(shè)計中將后驅(qū)動橋設(shè)計為與后懸架結(jié)構(gòu)形式和特性相適應(yīng)的非斷開式驅(qū)動橋。非斷開式驅(qū)動橋結(jié)構(gòu)簡單、造價低廉、工作可靠,大大降低了設(shè)計和制造成本。隨著汽車工業(yè)的發(fā)展及汽車技術(shù)的提高,在驅(qū)動橋結(jié)構(gòu)設(shè)計中還應(yīng)朝著能以幾種典型的零部件、以不同方案組合的設(shè)計方法和生產(chǎn)方式達到驅(qū)動橋產(chǎn)品的系列化和變型的方向發(fā)展。
懸架,在英語里懸架系統(tǒng)對應(yīng)的是單詞――Suspension。顧名思義,它是將車輪通過彈簧連接在車體上,并與其它部件構(gòu)成可動的機構(gòu)。在本次設(shè)計中,4座客貨兩用車的載重量為0.5噸,整車質(zhì)量也不大,故考慮采用鋼板彈簧式非獨立懸架。在這種懸架中,鋼板彈簧被用做非獨立懸架的彈性元件。這種形式的懸架技術(shù)成熟,結(jié)構(gòu)簡單,成本低廉。這樣既降低了生產(chǎn)成本,又保證了汽車的行駛平順性和衰減振動的能力。
在本次設(shè)計中,后驅(qū)動橋和后懸架的設(shè)計都在滿足汽車性能要求的前提下采用了經(jīng)濟合理的設(shè)計理念,這對汽車的批量生產(chǎn)提供了可靠的保證,也使此類汽車在市場競爭中處于有利地位。物美價廉的汽車產(chǎn)品對消費者也具有相當(dāng)?shù)奈Α?
2. 國內(nèi)外同類設(shè)計(或同類研究)的概況綜述
近年來,準雙曲面齒輪廣泛應(yīng)用在轎車、輕型車主減速器上,也越來越多地應(yīng)用在中型、重型貨車上。這樣主動錐齒輪的軸線可相對從動錐齒輪軸線偏移。當(dāng)主動錐齒輪軸線向下偏移時,在保證一定離地間隙的情況下,可降低主動錐齒輪和傳動軸的位置,因而使車身和整車質(zhì)心降低,有利于提高汽車行駛穩(wěn)定性。目前,汽車上廣泛采用的是對稱式錐齒輪差速器。瑞典斯堪尼亞LT100型汽車用的是強制鎖止式差速器;大眾高爾夫(Golf)轎車用的是摩擦片式自鎖差速器;托森(Torsen)差速器是一種新型差速機構(gòu),奧迪80和奧迪90(Audi Quattro)就采用了這種新型的托森差速器;高爾夫——辛克羅(Golf Syncro)型轎車的前后驅(qū)動軸之間采用了粘性聯(lián)軸器作為軸間差速器?,F(xiàn)代汽車基本采用全浮式半軸支撐和半浮式半軸支撐兩種形式。解放CA1091型汽車的驅(qū)動橋殼為整體式。整體式橋殼具有較大的強度和剛度,且便于主減速器的裝配、調(diào)整和維修,因此它也普遍應(yīng)用于各類汽車上。
目前國外廣泛采用空氣懸架,空氣懸架系統(tǒng)是以空氣彈簧為彈性元件,利用氣體的可壓縮性實現(xiàn)其彈性作用的——壓縮氣體的氣壓能夠隨載荷和道路條件變化而進行自動調(diào)節(jié),不論滿載還是空載,整車高度不會變化,可以大大提高乘坐的舒適性。我國在汽車懸架系統(tǒng)方面,除了鋼板彈簧懸架的設(shè)計及應(yīng)用比較成熟以外,其它的懸架技術(shù)的應(yīng)用絕大部分還處于車型引進、仿制或直接購買產(chǎn)品階段。懸架產(chǎn)品的設(shè)計開發(fā)滯后,一方面表現(xiàn)在設(shè)計手段落后,計算機應(yīng)力分析、動態(tài)仿真在企業(yè)中應(yīng)用還較少;另一方面沒有建立起一套完善的設(shè)計評價體系。
3. 課題設(shè)計(或研究)的內(nèi)容
(1)參考同類車型,完成4座客貨兩用車后驅(qū)動橋和后懸架的設(shè)計。
(2)根據(jù)整車參數(shù),完成后驅(qū)動橋和后懸架的設(shè)計計算。
(3)繪制后驅(qū)動橋和后懸架的結(jié)構(gòu)設(shè)計圖、裝配圖和零件圖,繪制總和不少于3張零號圖紙,其中包含一張以上計算機繪制(或手工繪制)的具有中等難度的一號圖紙。
(4)設(shè)計計算說明書用計算機打印,不少于12000字,應(yīng)有中英文摘要(摘要不少于400字),完成總量10000以上印刷符號的外文資料翻譯。
4. 設(shè)計(或研究)方法
根據(jù)所給技術(shù)條件和要求,按照后驅(qū)動橋、后懸架設(shè)計的方法,將后驅(qū)動橋設(shè)計為非斷開式驅(qū)動橋、單級主減速器、對稱式錐齒輪差速器、半軸的支承形式采用全浮式。后懸架采用鋼板彈簧式非獨立懸架,鋼板彈簧總片數(shù)為4片,減振器采用雙向作用筒式減振器。
5. 實施計劃
確定總體方案、調(diào)研、收集資料、完成開題報告。 6~~7周
整理數(shù)據(jù)資料、進行理論計算。 8~~9周
完成主要總圖設(shè)計。 10~11周
完成零、部件圖設(shè)計、完成機繪圖。 12~13周
整理、編寫設(shè)計說明書。 14~15周
整理圖紙及設(shè)計文件,準備上交。 16周
審閱、評審設(shè)計資料,答辯,評定成績。 17周
指導(dǎo)教師意見
指導(dǎo)教師簽字: 年 月 日
研究所(教研室)意見
研究所所長(教研室主任)簽字: 年 月 日
車輛與動力工程學(xué)院畢業(yè)設(shè)計說明書
4座微型客貨兩用車設(shè)計
(后驅(qū)動橋、后懸設(shè)計)
摘 要
本設(shè)計為4座微型客貨兩用車的后驅(qū)動橋、后懸架設(shè)計。參照現(xiàn)有的生產(chǎn)技術(shù)水平,綜合考慮生產(chǎn)成本,以及使用條件等多種因素, 經(jīng)過收集各類型的后驅(qū)動橋、懸架的資料、實車觀測和老師的指導(dǎo),完成了本次設(shè)計。
本次設(shè)計確定采用整體式驅(qū)動橋。其主減速器為單級,采用準雙曲面齒輪傳動,差速器采用普通對稱式圓錐齒輪對稱式圓差速器,全浮式半軸,整體鑄造式驅(qū)動橋殼。主減速器齒輪主要設(shè)計的是雙曲面齒輪的尺寸、校核及材料選擇;差速器主要計算的是對稱式圓錐齒輪的主要參數(shù)計算及校核;半軸設(shè)計主要是根據(jù)強度來確定半軸的半徑和半軸的結(jié)構(gòu)設(shè)計及材料與熱處理;驅(qū)動橋橋殼既是承載件又是傳動件,因此橋殼需要有足夠的強度和剛度。
后懸架采用鋼板彈簧式非獨立懸架,其需要計算的內(nèi)容比較廣泛,但也主要是集中在對彈性元件的計算上。計算包含了從滿載弧高,各鋼板彈簧片長度、厚度、寬度,到整個懸架系統(tǒng)的動、靜撓度值的確定。這是因為在懸架系統(tǒng)中,鋼板彈簧既是它的彈性元件又是它的導(dǎo)向機構(gòu),是其最為重要的部件。
綜合各部分的設(shè)計與校核的結(jié)果,本次設(shè)計基本能滿足其設(shè)計要求。
關(guān)鍵詞:后驅(qū)動橋, 整體式,非獨立懸架,鋼板彈簧
THE DESIGNING FOR THE MINIATURE MOTORCAR TO CARRY PERSONS AND GOODS WITH 4 SEATS
(THE DESIGN OF BACK DRIVING AXLE AND REAR SUSPENSION)
ABSTRACT
This design is for the back driving axle and back suspension of the miniature motorcar to carry persons and goods with 4 seats. According to the existing production technique level, synthesize the consideration production cost, and use the condition etc. various factor. In weeks , there was much useful information about the back driving axle and the rear suspension collected. With the helping of my teacher ,and observation on vehicle in laboratory , this designing is completed.
This design assurance adopts the whole type to drive the bridge. Its lord decelerates the machine as single class, the adoption allows a curved face wheel gear to spread to move, differ soon the machine adopt the common and symmetry type cone wheel gear symmetry type circle differ soon machine, the whole float type half stalk, hurtle to cast the whole type to drive the bridge hull. The lord mainly decelerate the machine wheel gear what to design is a pair of pit and the material choice of size, school of curved faces wheel gear. Bad soon machine mainly what to compute is the main parameter calculation and school pits of the symmetry type cone wheel gear.The half stalk design is mainly the basis strength to certain structure design and material and hot processingses of the radius and half stalk of the half stalks. Drive the bridge bridge hull since is to load the piece and is to spread to move the piece, so the bridge hull needs to have the enough strength and just degree.
The design of the rear suspension adopts unindependent suspension with steeel spring. It has more data computation.There are entire rate of rear suspension, heavy load arch high ,dynamic distortion quantity,the different length of different leaf brade, thickness and width of them.Those are indispensable data in suspension of a vehicle.
The result of design and school pit of comprehensive each part, this time design basic can satisfy it designs the request.
KEY WORDS:back driving axle, the whole type, unindependent suspension,steeel spring
目 錄
第一章 前言............. ...................... ........1
第二章 驅(qū)動橋結(jié)構(gòu)設(shè)計.................................2
§2.1驅(qū)動橋的組成與結(jié)構(gòu)方案分析......................2
§2.2 主減速器的結(jié)構(gòu)形式的分析和確定..................2
§2.2.1 主減速器傳動齒輪的類型......................2
§2.2.2 主減速器的減速形式..........................3
§2.3差速器的方案分析及確定......................... .3
§2.4半軸............................................3
§2. 5驅(qū)動橋殼結(jié)構(gòu)方案分析............................4
第三章 驅(qū)動橋尺寸計算 .................................5
§3.1主減速器的基本參數(shù)選擇與設(shè)計計算................5
§3.1.1主減速比的確定.............................5
§3.1.2主減速器齒輪計算載荷的確定.................. 5
§3.1.3主減速器齒輪基本參數(shù)的選擇.................. 6
§3.2差速器的基本參數(shù)選擇與設(shè)計計算.................17
§3.2.1差速器齒輪的基本參數(shù)的選擇................. 17
§3.2.2差速器齒輪的幾何尺寸設(shè)計計算............... 18
§3.3全浮式半軸的設(shè)計計算...........................20
§3.4驅(qū)動橋橋殼的設(shè)計計算...........................21
§3.4.1驅(qū)動橋殼結(jié)構(gòu)方案分析....................... 21
§3.4.2驅(qū)動橋殼強度計算........................... 22
第四章 驅(qū)動橋強度計算.................................28
§4.1主減速器準雙曲面齒輪的強度校核.................28
§4.1.1單位齒長圓周力............................. 28
§4.1.2輪齒的彎曲強度計算 ........................29
§4.1.3輪齒的彎曲強度計算......................... 30
§4.2差速器齒輪的強度計算...........................30
§4.3半軸強度計算...................................31
§4.3.1半軸扭轉(zhuǎn)應(yīng)力............................... 31
§4.3.2半軸的最大扭轉(zhuǎn)角........................... 31
第五章 軸承的壽命計算.................................33
§5.1主減速器主動錐齒輪支承軸承的計算...............33
§5.1.1主減速器主動齒輪上的當(dāng)量轉(zhuǎn)矩的計算....... 33
§5.1.2主從動錐齒輪齒面寬中點處的圓周力p的計算....33
§5.1.3雙曲面齒輪的軸向力與徑向力的計算........... 33
§5.1.4懸臂式支承主動錐齒輪的軸承徑向載荷的確定... 34
§5.1.5軸承壽命的計算............................. 35
§5.2從動齒輪支承軸承校核...........................36
§5.2.1單級主減速器從動齒輪支承軸承徑向載荷的確定. 36
§5.2.2軸承壽命計算............................... 36
第六章 后懸架結(jié)構(gòu)分析.................................38
§6.1懸架概述.......................................38
§6.2懸架結(jié)構(gòu)形式和布置的分析.......................38
第七章 后懸架參數(shù)確定和尺寸計算.......................40
§7.1總體布置及其基本參數(shù)...........................40
§7.2彈性元件的設(shè)計計算.............................40
§7.2.1鋼板彈簧的布置方案......................... 40
§7.2.2鋼板彈簧結(jié)構(gòu)尺寸參數(shù)計算................... 40
§7.3后懸架減振器的設(shè)計與計算....................... 47
§7.3.1選取相對阻尼系數(shù)..........................47
§7.3.2最大卸荷力的確定..........................47
§7.3.3減振器工作缸直徑D的確定....................47
第八章 結(jié) 論..........................................48
參考文獻...............................................49
致謝...................................................50
V
車輛與動力工程學(xué)院畢業(yè)設(shè)計說明書
第一章 前 言
汽車是20世紀最具代表性的人文景觀,也是21世紀最具影響力的社會事物。而作為汽車組成部分的后驅(qū)動橋、后懸架的設(shè)計對汽車的性能影響是相當(dāng)大的,對汽車工業(yè)的發(fā)展也具有深遠的意義。
本次設(shè)計的車型為4座微型客貨兩用車,屬于輕型車系列。由于該車型是大批量生產(chǎn),使用條件較好,且后懸架的結(jié)構(gòu)形式定為非獨立懸架,故本次設(shè)計中將后驅(qū)動橋設(shè)計為與后懸架結(jié)構(gòu)形式和特性相適應(yīng)的非斷開式驅(qū)動橋。非斷開式驅(qū)動橋結(jié)構(gòu)簡單、造價低廉、工作可靠,大大降低了設(shè)計和制造成本。隨著汽車工業(yè)的發(fā)展及汽車技術(shù)的提高,在驅(qū)動橋結(jié)構(gòu)設(shè)計中還應(yīng)朝著能以幾種典型的零部件、以不同方案組合的設(shè)計方法和生產(chǎn)方式達到驅(qū)動橋產(chǎn)品的系列化和變型的方向發(fā)展。
懸架,在英語里懸架系統(tǒng)對應(yīng)的是單詞――Suspension。顧名思義,它是將車輪通過彈簧連接在車體上,并與其它部件構(gòu)成可動的機構(gòu)。在本次設(shè)計中,4座客貨兩用車的載重量為0.5噸,整車質(zhì)量也不大,故考慮采用鋼板彈簧式非獨立懸架。在這種懸架中,鋼板彈簧被用做非獨立懸架的彈性元件。這種形式的懸架技術(shù)成熟,結(jié)構(gòu)簡單,成本低廉。這樣既降低了生產(chǎn)成本,又保證了汽車的行駛平順性和衰減振動的能力。
在本次設(shè)計中,后驅(qū)動橋和后懸架的設(shè)計都在滿足汽車性能要求的前提下采用了經(jīng)濟合理的設(shè)計理念,這對汽車的批量生產(chǎn)提供了可靠的保證,也使此類汽車在市場競爭中處于有利地位。物美價廉的汽車產(chǎn)品對消費者也具有相當(dāng)?shù)奈Α?
第二章 驅(qū)動橋結(jié)構(gòu)設(shè)計
§2.1 驅(qū)動橋的組成與結(jié)構(gòu)方案分析
在一般的汽車結(jié)構(gòu)中,驅(qū)動橋包括主減速器,差速器,驅(qū)動車輪的傳動裝置及橋殼等部件。
驅(qū)動橋的結(jié)構(gòu)形式與驅(qū)動車輪的懸架形式密切相關(guān)。當(dāng)車輪采用非獨立懸架時,驅(qū)動橋應(yīng)為非斷開式。當(dāng)采用獨立懸架時,為保證運動協(xié)調(diào),驅(qū)動橋應(yīng)為斷開式。
具有橋殼的非斷開式驅(qū)動橋結(jié)構(gòu)簡單,制造工藝性好、成本低、工作可靠、維修調(diào)整容易,廣泛應(yīng)用于各種載貨汽車、客車及多數(shù)的越野汽車和部分小轎車上。但整個驅(qū)動橋?qū)儆诨上沦|(zhì)量,對汽車的平順性和降低動載荷不利。斷開式驅(qū)動橋結(jié)構(gòu)較復(fù)雜,成本較高,但它大大地增加了離地間隙;減小了簧下質(zhì)量,從而改善了行駛時作用在車輪和車橋上的動載荷,提高了零部件的使用壽命;由于驅(qū)動車輪與地面的接觸情況及對各種地形的適應(yīng)性較好,大大增強了車輪的抗側(cè)滑能力;與之相配合的獨立懸架導(dǎo)向機構(gòu)設(shè)計的合理,可增加汽車的不足轉(zhuǎn)向效應(yīng),提高汽車的操縱穩(wěn)定性。
本設(shè)計根據(jù)所定車型及其動力布置形式(前置后驅(qū))采用了非斷開式驅(qū)動橋。
§2.2 主減速器的結(jié)構(gòu)形式的分析和確定
主減速器的結(jié)構(gòu)形式,主要是依據(jù)其齒輪類型和主動齒輪的安裝方法及減速形式的不同而異。
§2.2.1 主減速器傳動齒輪的類型
主減速器傳動齒輪的類型有:“格里森”或“奧利康”制螺旋錐齒輪和雙曲面齒輪傳動;圓柱齒輪傳動;渦輪渦桿。
由于雙曲面主動齒輪的螺旋角較大,則不產(chǎn)生根切的最小齒數(shù)可減小,所以可選用較小的齒數(shù),這樣可以增大傳動比,并可使進入嚙合的齒數(shù)增多,因而雙曲面齒輪傳動要比螺旋錐齒輪傳動更加平穩(wěn),無噪聲,強度也高;雙曲面齒輪的偏移距還給汽車的總布置帶來了方便。綜上所述,本設(shè)計采用雙曲面齒輪傳動。
§2.2.2 主減速器的減速形式
主減速器的減速形式主要有:單級主減速器;雙速主減速器;單級貫通式主減速器;雙級貫通式主減速器;單級(或雙級)主減速器附輪邊減速器。
由于單級主減速器具有結(jié)構(gòu)簡單、質(zhì)量小、尺寸緊湊及制造成本低等優(yōu)點,因此,它廣泛地用在主減速比小于7.6的各種中、小型汽車上。根據(jù)本車總布置對傳動比的要求,本設(shè)計采用單級主減速器。
§2.3 差速器的方案分析及確定
差速器的結(jié)構(gòu)型式有多種,其主要的結(jié)構(gòu)型式有:對稱式圓錐行星齒輪差速器;強制鎖止式防滑差速器;自鎖式差速器;帶有摩擦元件的圓錐齒輪防滑差速器;滑塊—凸輪式高摩擦差速器;渦輪式高摩擦差速器;帶有常作用式摩擦元件的圓錐齒輪差速器;自由輪式差速器;變傳動比式差速器。
多數(shù)汽車都屬于公路運輸車,對于在公路上行駛的汽車來說,由于路面較好,各驅(qū)動車輪與路面的附著系數(shù)幾乎沒有差別,且附著較好,因此,幾乎都采用了結(jié)構(gòu)簡單、工作平穩(wěn)、制造方便、用與公路汽車也很可靠的普通對稱式圓錐行星齒輪差速器。對于經(jīng)常行駛在泥濘、松軟土路或無路地區(qū)的越野汽車來說,為了防止因某一側(cè)驅(qū)動車輪滑轉(zhuǎn)而陷車,則可采用防滑差速器。由于本設(shè)計為4座微型客貨兩用車在良好路面上行駛,故采用對稱式 圓錐行星齒輪差速器即可滿足使用要求。
§2.4 半軸
驅(qū)動車輪的傳動裝置位于汽車傳動系統(tǒng)的末端,其功用是將轉(zhuǎn)矩有差速器半軸齒輪傳給驅(qū)動車輪。在一般非斷開式驅(qū)動橋上,驅(qū)動車輪的傳動裝置就是半軸,這時半軸將差速器半軸齒輪與輪轂連接起來。普通非斷開式驅(qū)動橋的半軸,根據(jù)其外端的支撐形式或受力狀況的不同而分為半浮式、3/4浮式和全浮式三種。
全浮式半軸理論上只承受轉(zhuǎn)矩而不承受彎矩,工作可靠,故廣泛的應(yīng)用于輕型以上的各類汽車上。本設(shè)計采用全浮式半軸的支撐型式。
§2.5 驅(qū)動橋殼結(jié)構(gòu)方案分析
驅(qū)動橋殼大致可分為可分式、整體式和組合式三種形式。
組合式橋殼是將主減速器殼和部分橋殼鑄為一體,而后用無縫鋼管分別壓入殼體兩端,兩者間用塞焊或銷釘固定。優(yōu)點是從動齒輪軸承的支承剛度較好,主減速器的裝配、調(diào)整比可分式橋殼方便,然而要求有較高的加工精度,常用于轎車、輕型貨車中。由于本設(shè)計是4座微型客貨兩用車,整備質(zhì)量小,故采用整體式橋殼。
第三章 驅(qū)動橋尺寸計算
§3.1 主減速器的基本參數(shù)選擇與設(shè)計計算
§3.1.1 主減速比的確定
對于有很大功率儲備的轎車,的值應(yīng)能滿足汽車達到的最高車速時發(fā)動機正發(fā)出最大功率。
所以 =0.377 (3-1)
=0.377
=5.137
式中,—車輪的滾動半徑;M
—變速器最高檔傳動比;—發(fā)動機最大功率時對應(yīng)的轉(zhuǎn)速;—車輪滾動半徑。
考慮到主、從動主減速齒輪可能有的齒數(shù),對值予以校正為。
§3.1.2 主減速器齒輪計算載荷的確定
按發(fā)動機最大轉(zhuǎn)矩和最低檔傳動比確定從動錐齒輪的計算轉(zhuǎn)矩。
= (3-2)
=
=1167.74 Nm
式中,為計算轉(zhuǎn)矩(Nm)。
按驅(qū)動橋打滑轉(zhuǎn)矩確定從動錐齒輪的計算轉(zhuǎn)矩。
= (3-3)
=
=2745.98 N·m
式中,為計算轉(zhuǎn)矩。
在式(3-2)(3-3)的計算中:
——猛接離合器所產(chǎn)生的動載系數(shù);
——發(fā)動機最大轉(zhuǎn)矩,N·m;
——由發(fā)動機至所計算的主減速器從動齒輪之間傳動系最低檔傳動比;
——傳動系上述傳動部分的傳動效率,取=0.9;
n——該汽車的驅(qū)動橋數(shù)目;
——汽車滿載時一個驅(qū)動橋給水平地面的最大負荷,N;
——輪胎對地面的附著系數(shù),對于安裝一般輪胎的公路用汽車,取=0.85;
——車輪滾動半徑。m;
,——分別為由所計算的主減速器從動齒輪到車輪之間的傳動效率和傳動比。
主減速器從動齒輪的平均計算轉(zhuǎn)矩為:
(3-4)
=
=
§3.1.3 主減速器齒輪基本參數(shù)的選擇
減速器齒輪應(yīng)滿足以下條件:
1)為了磨合均勻和得到理想的齒面重疊系數(shù),并避免小齒輪根切和兩齒輪齒數(shù)有公約數(shù)。
2)為了得到理想的齒面重合度和高的齒輪彎矩強度,主從動齒輪齒數(shù)和應(yīng)不小于40。
3)為了嚙合平穩(wěn)、噪音小和具有高的疲勞強度,對于轎車不小于9,對于貨車一般不小于6。
4)當(dāng)主動比較大時,應(yīng)盡量使取得少些,以便得到滿意的離地間隙。
5)對于不同的主傳動比,和應(yīng)有適當(dāng)?shù)拇钆洹?
一、主從動齒輪齒數(shù)的選擇
,
二、從動齒輪大端分度圓直徑和齒輪端面模數(shù)
根據(jù)經(jīng)驗公式 = (3-5)
代入數(shù)據(jù)得:
=15=157.957mm
式中,為直徑系數(shù),一般取13.0~15.3;為從動齒輪的計算轉(zhuǎn)矩,=min[]。
根據(jù) = (3-6)
=0.35
=3.68 取m=4
三、主、從動齒輪的齒面寬F和偏移距E
齒面寬F:
=0.155 (3-7)
=0.155157.957
=24.48mm
雙曲面齒輪的偏移距E
E≤0.2 (3-8)
=31.59
四、雙曲面齒輪的螺旋方向
從動齒輪左旋,主動齒輪右旋,主動齒輪軸線上偏移。這樣可使主從動齒輪有分離趨勢,防止輪齒卡死而損壞。
五、中點螺旋角
螺旋角沿齒寬是變化的,輪齒大端的螺旋角最大,小端的螺旋角最小。選擇時,應(yīng)考慮它對齒面重合度、輪齒強度和軸向力大小的影響。越大,重合度就大,同時嚙合的齒數(shù)也越多,傳動就平穩(wěn),噪聲低。但是過大,齒輪上受的軸向力也會過大。
根據(jù)“格里森”制推薦用公式近似地預(yù)選主動齒輪螺旋角的名義值:
式中,為主動齒輪的名義螺旋角的預(yù)選值;和為主、從動齒輪齒數(shù);為從動齒輪的節(jié)圓直徑;為雙曲面齒輪的偏移距。
六、法向壓力角
法向壓力角大一些可以增加輪齒強度,減少不發(fā)生根切的最少齒數(shù)。一般為或,本設(shè)計取=。
§3.1.4主減速器準雙曲面齒輪的幾何尺寸計算
表3-1 主減速器準雙曲面齒輪幾何尺寸計算用表
序號
算 例
注 釋
(1)
7
小齒輪齒數(shù)
(2)
36
大齒輪齒數(shù)
(3)
0.1944
(4)
F
24.48
大齒輪齒面寬
(5)
E
31.59
小齒輪軸線偏距
(6)
157.957
大齒輪分度圓直徑按式=預(yù)選
(7)
63.5
刀盤名義直徑按式2=預(yù)選
(8)
小齒輪螺旋角的預(yù)選值
(9)
tan
1.3937
(10)
cot=1.2(3)
0.2333
(11)
sin
0.9738
(12)
67.0587
大齒輪在齒面寬中點處的分度圓半徑
(13)
sin=
0.4588
(14)
cos
0.8886
(15)
(14)+(9)(13)
1.5279
(16)
(3)(12)
13.0391
(17)
=(15)(16)
19.9229
小齒輪在齒面寬中點處的分度圓半徑
(18)
=0.02(1)+1.06
或=1.30
1.2
(19)
+(17)
307.3173
齒輪收縮系數(shù)
(20)
Tan=
0.102793
0.113072
0.124379
(21)
1.005269
1.006372
1.007705
(22)
sin=
0.102254
0.112356
0.123428
(23)
5.869
6.451
7.09
(24)
sin=
0.440701
0.437699
0.434409
(25)
tan
0.490947
0.486807
0.482294
(26)
tan=
0.208279
0.230801
0.2559189
(27)
cos
0.978991
0.974384
0.968778
(28)
sin=
0.4501579
0.449206
0.448409
(29)
cos
0.892949
0.893428
0.893828
(30)
tan=
1.410577
1.412499
1.414115
(31)
(28)[(9)-(30)]
-0.007597
-0.008444
-0.009154
(32)
(3)(31)
-0.0014773
-0.001642
-0.00178
(33)
Sin=(24)-(22)(23)
0.440852
0.437884
0.434629
(34)
tan
0.491156
0.487061
0.482595
(35)
tan=
0.208191
0.230681
0.255759
(36)
(37)
cos
0.979008
0.974409
0.968815
(38)
sin=
0.450304
0.449383
0.448619
(39)
26.704133
26.655143
(40)
cos
0.892875
0.893339
0.893723
(41)
tan=
1.39341
1.393348
1.393283
(42)
(43)
cos
0.583053
0.583071
0.583089
(44)
=(42)-(39)
27.676741
(45)
cos
0.886437
0.885969
0.885582
(46)
tan
0.522146
0.523423
0.524493
(47)
cot=
0.231946
0.256589
0.283985
(48)
(49)
sin
0.974139
0.968622
0.961962
(50)
cos
0.225948
0.248538
0.273183
(51)
20.248978
20.333196
20.441061
(52)
296.787905
269.812965
245.471914
(53)
(51)+(52)
317.036883
290.146161
265.912975
(54)
61.021325
61.336508
61.734216
(55)
56.708862
51.394255
46.602235
(56)
-tan=
0.148742
0.136154
0.122412
(57)
-
8.46
7.75
6.98
(58)
cos
0.989118
0.990858
0.992591
(59)
0.010235
0.00933
0.008344
(60)
0.000262
0.000264
0.000261
(61)
(54)(55)
3460.449954
3152.344175
2876.952499
(62)
0.001246
0.003153
0.005259
(63)
(59)+(60)+(62)
0.0117434
0.012748
0.013865
(64)
74.191796
68.238748
62.660645
(65)
=
75.0080189
68.868346
63.128372
(66)
0.846576
0.922049
1.005887
(67)
(3)(50);1.0-(3)
0.0531189
0.805556
左欄用左公式;右欄用右公式
(68)
(35)(37)
60.363151
0.247784
左欄用左公式;右欄用右公式
(69)
(37)+(40)
1.016289
(70)
=(49)(50)
19.663527
(71)
Z=(12)(47)-(70)
-0.619875
大齒輪節(jié)錐頂點到小齒輪軸線的距離,正(+)號表示該節(jié)錐頂點越過了小齒輪軸線,負(-)號表示該節(jié)錐點在大齒輪輪體與小齒輪軸線之間。
(72)
=
69.710313
在節(jié)平面內(nèi)大齒輪齒面寬中點錐距
(73)
=
82.101462
大齒輪節(jié)錐距
(74)
(73)-(72)
12.391149
(75)
=
5.938598
:大齒輪在齒面寬中點處的齒高工作系數(shù),
(76)
0.553887
(77)
-(76)
0.53236
(78)
齒輪兩側(cè)壓力角之和。
(79)
Sin
0.707106
(80)
(81)
cos
0.923879
(82)
tan
0.414214
(83)
1.285232
(84)
=
377.001311
雙重收縮齒齒根角的總和(分)
(85)
0.13
大齒輪齒頂高系數(shù)
(86)
1.02
(87)
0.772018
大齒輪齒面寬中點處的齒頂高
(88)
6.10737
大齒輪齒面寬中點處的齒根高
(89)
雙重收縮齒:
標準收縮齒:
傾根錐母線收縮齒:
大齒輪齒頂角
2
3,
4,為負值。故,即用雙重收縮齒,
5,按雙重收縮齒計算=49.01
大齒輪齒頂角(單位為分):為了得到良好的收縮齒,應(yīng)按下述計算來確定采用雙重收縮齒,還是傾根錐母線收縮齒:1.用標準收縮齒的公式來計算2.算標準收縮齒齒頂角與齒根角之和;
3計算
4.當(dāng)為負數(shù):=(84)即為雙重收縮齒應(yīng)按雙重收縮齒計算公式;當(dāng)為正數(shù):=(18)為傾根錐母線收縮齒。
(90)
sin
0.014256
(91)
雙重收縮齒:
標準收縮齒:
傾根錐母線齒:
5.466519
大齒輪的齒根角(單位為分)
(92)
sin
0.095264
(93)
0.948665
大齒輪齒頂高
(94)
7.287801
大齒輪齒根高
(95)
C=0.150(75)+0.05
0.940789
頸向間隙C為大齒輪在齒面寬中點處的工作齒高的15%再加上0.05
(96)
8.236467
大齒輪齒全高
(97)
7.295677
大齒輪齒工作高
(98)
大齒輪面錐角
(99)
sin
0.965759
(100)
cos
0.259441
(101)
=(48)
大齒輪根錐角
(102)
sin
0.931563
(103)
cos
0.363581
(104)
cot
0.390291
(105)
158.475318
大齒輪外圓直徑
(106)
(70)+(74)(50)
23.048575
(107)
22.135994
大齒輪外援至小齒輪軸線的距離
(108)
0.229635
(109)
0.572713
(110)
-0.849509
大齒輪面錐頂點至小齒輪軸線的距離正(+)號表示該面錐頂點越過小齒輪軸線;負(-)號表示該面錐頂點在大齒輪輪體與小齒輪軸線之間
(111)
-0.047161
大齒輪根錐角頂點至小齒輪軸線的距離,正(+)號表示該跟錐頂點越過小齒輪,負(-)號表示該根錐頂點在大齒輪輪體與小齒輪軸線之間
(112)
(12)+(70)(104)
74.733185
(113)
sin
0.422704
(114)
cos
0.906268
(115)
tan
0.466423
(116)
sin
0.329502
(117)
19.238523
大齒輪面錐角
(118)
cos
0.944155
(119)
tan
0.348991
(120)
2.466731
(121)
12.012431
小齒輪面錐頂點至大齒輪軸線的距離,正(+)號表示該面錐頂點越過大齒輪軸線,負(-)表示該面錐頂點在小齒輪輪體與大齒輪軸線之間
(122)
tan
0.023448
(123)
;0.999725
(124)
;cos
; 0.90399
(125)
; 0.996357
(126)
0.092728: -0.5883
(127)
1.105898
(128)
60.554444
(129)
0.947607
(130)
(74)(127)
13.703351
(131)
74.09051
小齒輪外圓至大齒輪軸線的距離
(132)
(4)(127)-(130)
13.36904
(133)
44.392198
小齒輪輪齒前緣至大齒輪軸線的距離
(134)
(121)+(131)
86.102942
(135)
60.09829
小齒輪外圓直徑
(136)
72.341088
(137)
sin
0.436681
(138)
(139)
cos
0.899616
(140)
0.463951
(141)
14.818329
小齒輪根錐頂點至大齒輪軸線的距離,正(+)號表示該根錐頂點越過大齒輪軸線,負(-)號表示該根錐頂點在小齒輪輪體與大齒輪軸線之間
(142)
sin
0.233398
(143)
小齒輪根錐角
(144)
cos
0.972381
(145)
tan
0.240027
(146)
0.2
(147)
0.4
(148)
(90)+(92)
0.10952
(149)
(96)-(4)(148)
(150)
57.621462
在節(jié)平面內(nèi)大齒輪內(nèi)錐距
§3.2 差速器的基本參數(shù)選擇與設(shè)計計算
§3.2.1差速器齒輪的基本參數(shù)的選擇
一、行星齒輪數(shù)目的選擇
轎車常用2個行星齒輪,載貨汽車和越野車多用4個行星齒輪,少數(shù)汽車采用3個行星齒輪。根據(jù)載荷計算本車采用4個行星齒輪。
行星球面半徑有公式:
mm (3-9)
確定。式中:——行星齒輪球面半徑系數(shù),=2.52~2.99,對于4個行星齒輪的轎車和公路載貨汽車取最小值,對于2個行星齒輪的轎車以及所有越野車和礦車取最大值?!嬎戕D(zhuǎn)距,取=min[]。
則:
mm
(0.98~0.99)mm=26.45mm
上式中,為節(jié)錐距。
二、行星齒輪與半軸齒輪齒數(shù)的選擇
在任何圓錐行星齒輪式差速器中,左右兩個半軸齒輪齒數(shù)、之和,必須能被行星齒輪的數(shù)目所整除,以便行星齒輪能均勻的分布于半軸齒輪的軸線周圍,否則差速器無法安裝。即應(yīng)滿足的安裝條件為:
(3-10)
式中,——左、右半周齒輪的齒數(shù),對于對稱式圓錐行星齒輪差速器來說,;n——行星齒輪數(shù)目;I——任意整數(shù)。
取
=14
則
行星齒輪齒數(shù)為:,半軸齒輪齒數(shù)為。
三、差速器圓錐齒輪模數(shù)及半軸齒輪節(jié)圓直徑的初步確定
首先,初步求出行星齒輪與半軸齒輪的節(jié)錐角、;
(3-11)
(3-12)
則
;
式中,——分別為行星齒輪與半軸齒輪齒數(shù)。
再按下式初步求出圓錐齒輪的大端端面模數(shù)m
(3-13)
得:
m=2.986 取m=3 反推出26.74mm
節(jié)圓直徑d即可根據(jù)齒數(shù)Z和模數(shù)m由下式求得:
d=mz (3-14)
則
,
四、壓力角的確定
取,齒高系數(shù)為0.8,最少齒數(shù)可減至10。
五、行星齒輪安裝孔直徑及深度L的確定
(3-15)
=13.483 取
l=1.1=15.4
§3.2.2差速器齒輪的幾何尺寸設(shè)計計算
表3-2差速器齒輪的幾何尺寸計算
序號
項目
計算公式
(1)
行星齒輪數(shù)
(2)
半軸齒輪
=14
(3)
模數(shù)
M=3
(4)
齒面寬
F=7.975269
(5)
齒工作高
(6)
齒全高
(7)
壓力角
(8)
軸交角
=
(9)
節(jié)圓直徑
,
(10)
節(jié)錐角
,
,
(11)
周節(jié)
T=3.1416m=9.4248
(12)
節(jié)錐距
(13)
齒頂高
(14)
齒根高
(15)
徑向間隙
C=
(16)
齒根角
(17)
面錐角
(18)
根錐角
(19)
外圓直徑
(20)
節(jié)錐頂點至外緣距離
(21)
理論弧齒厚
=4.92027
(22)
齒側(cè)間隙
B=0.21
(23)
弦齒厚
(24)
弦齒高
§3.3 全浮式半軸的設(shè)計計算
在設(shè)計時,全浮式半軸桿部直徑的初步選取可按下式進行:
(3-16)
因為半軸承受的最大縱向力為
式中, 為汽車加速或減速時的質(zhì)量轉(zhuǎn)移系數(shù);為滿載靜止汽車的驅(qū)動橋?qū)λ降孛娴妮d荷。
則左右半軸承受的轉(zhuǎn)矩T為:
所以
取
§3.4 驅(qū)動橋橋殼的設(shè)計計算
驅(qū)動橋殼的主要功用是支撐汽車質(zhì)量,并承受由車輪傳來的路面的反力和反力矩,并經(jīng)懸架傳給車架(或車身);它又是主減速器、差速器、半軸的裝配基體。
§3.4.1驅(qū)動橋殼結(jié)構(gòu)方案分析
驅(qū)動橋殼大致可分為可分式、整體式和組合式三種形式。
一、可分式橋殼
可分式橋殼(圖3—1)由一個垂直接合面分為左右兩部分,兩部分通過螺栓聯(lián)接成一體。每一部分均由一鑄造殼體和一個壓入其外端的半軸套管組成,軸管與殼體用鉚釘連接。
這種橋殼結(jié)構(gòu)簡單,制造工藝性好,主減速器支承剛度好。但拆裝、調(diào)整、維修很不 圖3-1可分式橋殼
方便,橋殼的強度和剛度受結(jié)構(gòu)的限制,曾用于輕型汽車上,現(xiàn)已較少使用。
二、整體式橋殼
整體式橋殼(圖3—2)的特點是整個橋殼是一根空心梁,橋殼和主減速器殼為兩體。它具有強度和剛度較大,主減速器拆裝、調(diào)整方便等優(yōu)點。 圖3-2 整體式橋殼
按制造工藝不同,整體 a)鑄造式 b)鋼板沖壓焊接式
式橋殼可分為鑄造式(圖3—2a)、
鋼板沖壓焊接式(圖3—2b)和擴張成形式三種。 鑄造式橋殼的強度和剛度較
大,但質(zhì)量大,制造工藝復(fù)雜,但整體式橋殼可以制成復(fù)雜的形狀,壁厚能夠變化,可得到理想的應(yīng)力分布,故其強度和剛度均較好,工作可靠,主要用于中、重型貨車上。鋼板沖壓焊接式和擴張成形式橋殼質(zhì)量小,材料利用率高,制造成本低,適于大量生產(chǎn),但其橋殼不能做成復(fù)雜而理想的斷面,因壁厚一定,故難于調(diào)整應(yīng)力分布。鋼板沖壓焊接式橋殼主要應(yīng)用于轎車和中、小型貨車及部分重型貨車上。
三、組合式橋殼
組合式橋殼(圖3—3)是將主減速器殼與部分橋殼鑄為一體,而后用無縫鋼管分別壓入殼體兩端,兩者間用塞焊或銷釘固定。它的優(yōu)點是從動齒輪軸承的支承剛度較好,主減速器的裝配、調(diào)整比可分式橋殼方便,然而要求有較高的加工
精度,常用于轎車、輕型貨車 圖3-3 組合式橋殼
中。
§3.4.2驅(qū)動橋殼強度計算
對于具有全浮式半軸的驅(qū)動橋,強度計算的載荷工況與半軸強度計算的:三種載荷工況相同。圖3-4為驅(qū)動橋殼受力圖,橋殼危險斷面通常在鋼板彈簧座內(nèi)側(cè)附近,橋兒端郎的輪轂軸承座根部也應(yīng)列為危險斷面進行強度驗算。
橋殼的許用彎曲應(yīng)力為300~500MPa,許用扭轉(zhuǎn)切應(yīng)力為150~400MPa??慑戣T鐵橋殼取較小值,鋼板沖壓焊接橋殼取較大值。
一、橋殼的靜彎曲應(yīng)力計算
圖3-4 橋殼受力簡圖
橋殼像一個空心梁,兩端經(jīng)過輪轂支撐在車輪上,在鋼板彈簧座處承受汽車的簧上載荷。
兩個鋼板彈簧座之間的彎矩為:
Nm (3-17)
計算結(jié)果為:
=836.97Nm
由于橋殼的危險截面在鋼板彈簧座的附近,通常由于遠小于,而且設(shè)計時不易準確的預(yù)計,當(dāng)沒有數(shù)據(jù)時,可以忽略.
而靜彎曲應(yīng)力則為:
MPa (3-18)
其中 ----為地面對車輪垂直反力在危險斷面引起的垂直平面內(nèi)的彎矩
----危險截面處(鋼板彈簧座附近)橋殼的垂向彎曲截面系數(shù):
(3-19)
=14523.8
計算
關(guān)于橋殼的危險截面在鋼板彈簧座的附近的形狀,主要有橋殼的結(jié)構(gòu)形式和制造工藝來確定。
二、在不平的路面沖擊載荷的作用下的強度計算
當(dāng)汽車在不平的路面行駛,橋可還會另外的承受附加的沖擊載荷,在這兩種載荷的作用下所產(chǎn)生的彎曲應(yīng)力:
(3-20)
其中 ---動載荷系數(shù),對轎車、客車取1.75,對貨車取2.5,對越野汽車取3.0。此處取2.5。
計算結(jié)果:
三、汽車以最大牽引力行駛時的橋殼強度計算
為使計算簡化,不考慮側(cè)向力,汽車直線行使.假設(shè)地面對后驅(qū)動橋左右輪的垂直反作用力為:
(3-21)
而作用于左右驅(qū)動輪的轉(zhuǎn)矩所引起的地面對左右驅(qū)動輪的最大切向反作用力為:
(3-22)
由于驅(qū)動橋車輪所承受的地面對其作用的最大切向力反作用力,使驅(qū)動橋殼也承受著水平方向的彎矩,對于裝有普通圓錐齒輪差速器的驅(qū)動橋,由于其左、右驅(qū)動車輪的驅(qū)動轉(zhuǎn)矩相等,故有:
(3-23)
橋殼還承受因為驅(qū)動橋傳遞轉(zhuǎn)矩而引起的反作用力矩,這時,兩個鋼板彈簧座之間的橋殼承受的轉(zhuǎn)矩為:
(3-24)
設(shè)計中,鋼板彈簧座附近的橋殼為圓管斷面,在該處合成的彎矩為:
(3-25)
該危險截面的合成應(yīng)力為:
(3-26)
橋殼的許用彎曲應(yīng)力為300~500Mpa,許用扭轉(zhuǎn)應(yīng)力為150~400Mpa,可鍛鑄鐵橋殼取小值,鋼板沖壓焊接橋殼取大值。
四、汽車緊急制動時的橋殼強度計算
假設(shè)地面對驅(qū)動橋左右輪的垂直反作用力相等,則:
(3-27)
因為
(3-28)
所以制動減速度為:
a=g (3-29)
代入式(3-27)得:
(3-30)
因此,可以求的緊急制動時,兩鋼板彈簧座之間的垂向彎矩以及水平方向的彎矩:
(3-31)
(3-32)
橋殼在兩個鋼板彈簧座的外側(cè)部分還承受由于制動力所引起的轉(zhuǎn)矩T為:
(3-33)
所以,可以求得緊急制動時,橋殼在左右鋼板彈簧座危險截面處的合成應(yīng)力為:
(3-34)
得:
五、汽車受最大側(cè)向力時的橋殼的強度計算
汽車高速行駛時,會產(chǎn)生一個作用于汽車質(zhì)心的相當(dāng)大的離心力.當(dāng)汽車所受的汽車側(cè)向力達到地面給輪胎的側(cè)向反作用力的最大值即側(cè)向附著力時,汽車處于臨界的側(cè)滑狀態(tài).因此,汽車側(cè)滑的條件:
(3-35)
式中 ,---驅(qū)動橋所受的側(cè)向力,N ;
---地面給左、右驅(qū)動車輪的側(cè)向反作用力,N;
---汽車滿載靜止于水平路面時驅(qū)動橋給地面的載荷,N;
φ---輪胎魚地面間的側(cè)向附著系數(shù),計算時取。
設(shè)計橋殼時,應(yīng)充分考慮汽車的使用條件,根據(jù)汽車的類型及使用條件,合理地選擇橋殼的結(jié)構(gòu)類型、材料、及安全條件。
關(guān)于橋殼材料,鑄造整體式多采用可鍛鑄鐵(KT350-10,KT370-12)、球墨鑄鐵(QT400-18)、鑄鋼(ZG45,多用于重型汽車的橋殼鑄件);對于鋼板沖壓焊接整體式橋殼,多采用16Mn、09SiV、35或40中碳鋼板。半軸套管多采用40Cr、40MnB等中碳合金鋼或45中碳鋼的無縫鋼管或鑄件。
第四章 驅(qū)動橋強度計算
§4.1 主減速器準雙曲面齒輪的強度校核
主減速器準雙曲面齒輪的強度計算主要有單位齒長上的圓周力、輪齒彎曲強度、輪齒的接觸強度計算等。
§4.1.1 單位齒長圓周力
一、對于主動齒輪按發(fā)動機最大轉(zhuǎn)矩計算
= (4-1)
=
=699.02<893
= (4-2)
=
=147.628<321
式中 P——單位單位齒長上的圓周力,;
—發(fā)動機最大扭距;
—主動齒輪節(jié)圓直徑,mm;
—變速器傳動比。
二、對于從動齒輪按最大附著力矩計算時
p= (4-3)
=
=563.24<1071
式中 ——從動齒輪節(jié)圓直徑,mm;
——驅(qū)動橋?qū)λ降孛娴呢摵?,N;
——輪胎與地面的附著系數(shù);
——輪胎滾動半徑,m。
§4.1.2 輪齒的彎曲強度計算
錐齒輪輪齒彎曲應(yīng)力為:
= (4-4)
對于從動齒輪,按=計算時
==474.75<700
對于主動齒輪
= (4-5)
按=計算時
===
==527.5<700
式中,—超載系數(shù);
—齒輪的計算轉(zhuǎn)矩,??;
—超載系數(shù);
—尺寸系,;
—載荷分配系數(shù),當(dāng)兩個齒輪均為騎馬式支撐時,=1.00~1.10;當(dāng)一個齒輪用騎馬式支撐時,=1.10~1.25;
—質(zhì)量系數(shù);
Z—計算齒輪齒數(shù);
m—端面模數(shù);
J—計算彎曲應(yīng)力綜合系數(shù)。
§4.1.3 輪齒接觸強度計算
小齒輪輪齒工作頻率高,且小齒輪曲率半徑較大齒輪的小,因此小齒輪的接觸強度較弱,故只校核小齒輪的接觸強度即可。
按=計算
= (4-6)
=
=357.9<2800
按=計算
= (4-7)
=
=839.8<1750
式中—材料的彈性系數(shù),其它同上。
由以上計算可知:主減速器齒輪滿足使用要求。
§4.2 差速器齒輪的強度計算
差速器齒輪主要是進行彎曲強度計算,而對于疲勞壽命則不予考慮,這是由于行星齒輪在差速器的工作中經(jīng)常只是起等臂推力桿的作用,僅在左右驅(qū)動車輪有轉(zhuǎn)速差時行星齒輪和半軸齒輪才有相對滑動的緣故。由于半軸齒輪的齒數(shù)大于行星齒輪的齒數(shù),故半軸齒輪的彎曲強度較低,因此只對半軸齒輪進行彎曲強度校核即可。
按半軸齒輪承受的最大轉(zhuǎn)矩計算:
= (4-8)
=
=859.75<980
按半軸齒輪承受的工作轉(zhuǎn)矩計算:
= (4-9)
=
=192.82<210.9。
式中 、分別為主減速器從動齒輪承受最大轉(zhuǎn)矩和工作轉(zhuǎn)矩;其它意義同上。
§4.3 半軸強度計算
§4.3.1 半軸扭轉(zhuǎn)應(yīng)力
(4-10)
=
Mpa<=500Mpa
式中——半軸的扭轉(zhuǎn)應(yīng)力,;T——半軸的計算轉(zhuǎn)距,
d——半軸桿部直徑,; ——半軸扭轉(zhuǎn)的許用應(yīng)力。
§4.3.2 半軸的最大扭轉(zhuǎn)角
(4-11)
=
=
式中T——半軸承受的最大轉(zhuǎn)距,;l——半軸長度,
G——材料的剪切彈性模量,;
J——半軸橫截面的極慣性距,J=,。
第五章 軸承壽命的計算
§5.1 主減速器主動錐齒輪支承軸承的計算
§5.1.1 主減速器主動齒輪上的當(dāng)量轉(zhuǎn)矩的計算
=
(5-1)
=
=62.1
式中,為變速器1,2,3,4檔使用率;
為變速器1,2,3,4檔傳動比;
為變速器處于1,2,3,4檔時發(fā)動機轉(zhuǎn)矩利用率;
為發(fā)動機最大轉(zhuǎn)矩。
§5.1.2 主從動圓錐齒輪齒面寬中點處的圓周力p的計算
===3120.6N (5-2)
==3120.6=4739.486N (5-3)§5.1.3 雙曲面齒輪的軸向力與徑向力的計算
一、雙曲面錐齒輪的軸向力和徑向力的計算
= (5-4)
=
=4653.417N
= (5-5)
=
=1097.89N
二、從動齒輪的軸向力和徑向力的計算
= (5-6)
=
=1453.22N
=
=
=2996.9N
§5.1.4 懸臂式支承主動錐齒輪的軸承徑向載荷的確定
圖5-1 主動錐齒輪支承軸承
軸承A的徑向載荷為:
= (5-7)
=
=1574.3N
=
=
=4455.8N
§5.1.5 軸承壽命的計算
一、初選軸承型號
根據(jù)已知軸徑和工作條件,初選軸承A為30305,B為30306。
查表得 =44.8KN,=30KN,=0.31,=1.9
=55.8KN,=38.5KN,=0.31,=1.9
二、 計算兩軸承的內(nèi)部軸向力、及軸向載荷、
===414.3N (5-10)
===1172.6N
因為 +=4653.417+414.3=5067.717N﹥
所以 ==414.3N
=+=5067.717N
三、計算兩軸承的當(dāng)量載荷、
軸承A:==0.263﹤ 故查表得 =1,=0
軸承A在工作中受沖擊比較嚴重,故取=1.8
==1.8×1574.3=2833.74N
軸承B:=﹥ 故查表得=0.4,=1.9
工作中B沒有A受沖擊大,故取=1.2
= (5-11)
=1.2×(0.4×4455.8+1.9×5067.717)
=13693.2N
四、 計算軸承使用壽命
===30052h (5-12)
===3274h
式中 —主減速器主動齒輪支承軸承的計算轉(zhuǎn)速,;
§5.2從動齒輪支承軸承校核
§5.2.1單級主減速器從動齒輪支承軸承徑向載荷的確定
圖5-2 從動齒輪支承軸承
=
=
=1293.25N
=
=
=3674.4N
§5.2.2 軸承壽命計算
一、初選軸承型號
選C、D為30207型軸承,查表得=51.5, =37.2,e=0.4,Y=1.7
二、計算兩軸承的內(nèi)部軸向力,及軸向載荷,
===380.37N
===1080.7N
因為 +=1080.7+1453.22=2533.92﹥
所以 ==1080.7N
=+=2533.92N
三、計算兩軸承當(dāng)量載荷,
軸承C:=﹥e,故查表得=0.4,=1.9.
軸承C在工作中受到的沖擊大故取=1.5
=1.5×(0.4×1293.25+1.9×2533.92)
=7997.7N
軸承D: ==0.294﹤e,故查表得=1, =0;取=1.5
==1.5×3674.6=5511.9N
四、計算軸承壽命
==
=82792h
==
= 286331h
式中為主減速器從動齒輪支承軸承的計算轉(zhuǎn)速。
第六章 后懸架結(jié)構(gòu)分析
§6.1 懸架概述
懸架的功用是把路面作用于車輪上的垂直反力、縱向反力和側(cè)向反力及這些反力所造成的力矩傳到車架上,以保證汽車到正常行駛。
現(xiàn)代汽車的懸架盡管有各種不同的結(jié)構(gòu)形式,但一般都由彈性元件、減震器和導(dǎo)向機構(gòu)三部分組成。此外,為限制彈簧的最大變形并防止彈簧直接撞擊車架,一般鋪由緩沖塊。
懸架設(shè)計的基本要求為:
1)保證汽車有良好的行駛平順性;
2)具有合適的衰減振動的能力;
3)保證汽車具有良好的操縱穩(wěn)定性;
4)汽車制動或加速時,要保證車身穩(wěn)定,減少車身縱傾,轉(zhuǎn)彎時車身側(cè)傾角)合適;
5)結(jié)構(gòu)緊湊,占用空間尺寸要?。?
6)可靠地傳遞車身與車輪之間的各種力和力矩,在滿足零部件質(zhì)量要小的同,還要保證有足夠的強度和壽命;
7)制造成本低,便于維修和保養(yǎng)。
§6.2懸架結(jié)構(gòu)形式和布置的分析
汽車懸架可分為兩大類:非獨立懸架和獨立懸架。非獨立懸架的特點是左、右車輪用一根整體軸線連接,再經(jīng)過懸架與車架連接;獨立懸架的結(jié)構(gòu)特點是左、右車輪通過各自的懸架與車架連接。
非獨立懸架的優(yōu)點是:1、結(jié)構(gòu)簡單,制造、維護方便,經(jīng)濟性好;2、工作可靠,使用壽命長;3、車輪上下振動所引起的前輪定位變化小,輪胎磨損??;4、轉(zhuǎn)向時,車身側(cè)傾后車輪的外傾角不變,傳遞測向力的能力不降低;5、側(cè)傾中心位置較高,有利于減小轉(zhuǎn)向時車身的側(cè)傾角。缺點是:汽車行駛平順性較差,在不平路面上行駛時左、右車輪相互影響,當(dāng)兩側(cè)車輪不同步跳動時,車輪會左右擺動,使前輪容易產(chǎn)生擺振。
獨立懸架的優(yōu)點是:1、減輕簧下部分重量,提高車輪的附著性;2、左右前輪不是連在一起的,這就減少了對轉(zhuǎn)向桿系的干涉,因而不易發(fā)生跳擺;3、一般車輪機構(gòu)和懸架彈簧是分開的,這樣可減少跳擺的危害,因而常使用軟彈簧提高車的舒適性;4、由于沒有連接左右車輪的車軸,能降低發(fā)動機和駕駛室的高度,從而降低了重心,同時也能擴大車身和行李箱等等面積。缺點是:1、結(jié)構(gòu)復(fù)雜,成本較高,維修困難;2、一般在車輪上下跳動時前輪外傾角、輪距等定位產(chǎn)生變化,影響輪胎壽命。這種懸架主要用在乘用車和部分總質(zhì)量不大的商用車上。
根據(jù)本次設(shè)計任務(wù)書的要求及動力布置的形式,對比非獨立懸架與獨立懸架的優(yōu)缺點后,本設(shè)計后懸架采用非獨立懸架。
為改善汽車的行駛平順性,大多數(shù)汽車的懸架系統(tǒng)內(nèi)部都裝有減震器。減震器可分為:(1)、液力減震器,(2)、充氣式減震器,(3)、阻力可調(diào)式減震器。由于液力式減震器結(jié)構(gòu)簡單,可以維修,制造成本低,因此本次設(shè)計采用液力式減震器.
汽車懸架系統(tǒng)中采用的彈簧元件主要有鋼板彈簧、螺旋彈簧、扭桿彈簧、氣體彈簧和橡膠彈簧等幾種結(jié)構(gòu)形式。其中,鋼板彈簧是汽車懸架中應(yīng)用最廣泛的一種彈性元件
收藏